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Stimuli presented pairwise for same–different judgments belong to two
distinct observation areas (different time intervals and/or locations). To
reflect this fact the underlying assumptions of multidimensional Fechnerian
scaling (MDFS) have to be modified, the most important modification being
the inclusion of the requirement that the discrimination probability functions
possess regular minima. This means that the probability with which a fixed
stimulus in one observation area (a reference) is discriminated from stimuli
belonging to another observation area reaches its minimum when the two
stimuli are identical (following, if necessary, an appropriate transformation
of the stimulus measurements in one of the two observation areas). The
remaining modifications of the underlying assumptions are rather straight-
forward, their main outcome being that each of the two observation areas has
its own Fechnerian metric induced by a metric function obtained in accor-
dance with the regular variation version of MDFS. It turns out that the
regular minimality requirement, when combined with the empirical fact of
nonconstant self-similarity (which means that the minimum level of the
discrimination probability function for a fixed reference stimulus is generally
different for different reference stimuli), imposes rigid constraints on the
interdependence between discrimination probabilities and metric functions
within each of the observation areas and on the interdependence between
Fechnerian metrics and metric functions belonging to different observation
areas. In particular, it turns out that the psychometric order of the stimulus
space cannot exceed 1. © 2002 Elsevier Science (USA)

1. INTRODUCTION

This paper adapts the theory of multidimensional Fechnerian scaling (MDFS) to
the empirical paradigm in which stimuli are presented pairwise and the observer is



FIG. 1. A possible appearance of a discrimination probability function for unidimensional stimuli.

asked to determine whether they are the same or different. Although the discrimi-
nation probabilities

k(x, y)=Pr[stimulus y is discriminated from stimulus x]

can be computed from other experimental paradigms as well, the same–different
one with pairwise presented stimuli seems to be most naturally suited for this
purpose. Throughout this paper discrimination probabilities k(x, y) are always
assumed to be obtained from same–different judgments. A possible appearance of
such a discrimination probability function is shown in Fig. 1.
In the previous papers on MDFS (Dzhafarov, 2002, in press a, b; Dzhafarov &
Colonius, 1999a, 1999b, 2001) the two stimuli, x and y, have been treated as
belonging to one and the same n-dimensional stimulus space, the n dimensions of
the space representing the stimulus characteristics that vary in a given experiment.
This is, however, an idealization, less appropriate for the same–different paradigm
than it is for one in which stimuli are presented and categorized by an observer one
at a time, the pairwise discrimination probabilities being computed from the distri-
butions of the categories assigned to individual stimuli.
The key fact about pairwise presentations is that x and y belong to two distinct
observation areas, in essence two different stimulus spaces: thus, x (say, a tone) may
be presented first and followed by y (another tone), or x and y (visual objects) may
be presented to the left and to the right of a fixation mark. Fechner (1887/1987,
p. 217) calls this key fact the ‘‘non-removable spatiotemporal non-coincidence’’ of
the stimuli being compared. It gives an empirical meaning to treating x and y as an
ordered pair, with the implication that (x, y) and (y, x) are distinct pairs, and (x, x)
is a pair rather than a single stimulus.
To reflect the existence of two distinct observation areas, the underlying assump-
tions of MDFS have to be modified. The modifications in question are simple, but
they have surprisingly far-reaching implications. The most important modification
occurs in the First Assumption of Fechnerian scaling whose original formulation
has to be complemented by a fundamental qualitative constraint, termed regular
minimality, both intuitively plausible and corroborated by empirical evidence. This and

584 EHTIBAR N. DZHAFAROV



other, more trivial, emendations of the underlying assumptions, when taken in
conjunction with the empirical fact that another qualitative constraint, constant self-
similarity, does not hold for discrimination probabilities, impose rigid limitations on
the shape and smoothness of the discrimination probability functions in the vicinity
of their minima, inducing thereby rigid constraints on the ensuing Fechnerian
computations.
A brief account of the application of the theory presented in this paper to uni-
dimensional stimulus continua can be found in Dzhafarov (2001).

2. REGULAR MINIMALITY AND NONCONSTANT SELF-SIMILARITY

To emphasize the symmetrical treatment of the two stimuli x and y and the arbi-
trariness of assigning to one of them the status of a reference stimulus, the discri-
mination probabilities are denoted by k(x, y), rather than kx(y) used in the pre-
vious publications. Formally, a complete characterization of a stimulus x in a
same–different experiment can be presented as

x=(x1, ..., xn, F, I),

where (x1, ..., xn) are stimulus characteristics that vary in the experiment, F denotes
all stimulus characteristics that could vary independent of (x1, ..., xn) but are kept
at fixed values, while I stands for the stimulus characteristics that determine the
observation area to which the stimulus belongs (e.g., first-second, left-right). The
values of (x1, ..., xn) are assumed to belong to an open connected region of Ren,
referred to as an n-dimensional continuous stimulus space, M. In accordance with
common practice, it is convenient to identify x with its varying part,

x=(x1, ..., xn),

leaving F unmentioned altogether and I implied by the position of x within the
ordered pair: (x, · ) or ( · , x). In the present context, however, the observation area
often has to be mentioned explicitly, in which case I use a modified ‘‘belongs to’’
sign and write xEI1 or xEI2 to indicate that x belongs to the observation area I1
(or I2). Thus, for any x, y ¥M, the expression k(x, y) implies xEI1 and yEI2.
The notion of regular minimality is somewhat easier to introduce in the context
of the sensory-physical matching paradigm rather than the same–different compari-
sons. Refer to Fig. 2. Let, for a fixed xEI1, the subject be asked to find the value of
yEI2 that appears as close to x as possible (closer than any other yEI2); vice versa,
for a fixed yEI2 the subject seeks the value of xEI1 that appears as close as possible
to y. Let both these tasks have unique solutions: for a fixed xEI1 the closest match
in I2 occurs at y=h(x), while for a fixed yEI2 the closest match in I1 occurs at
x=g(y). The regular minimality constraint is the requirement that

g — h−1.

In other words, if y0 is the closest match to x0EI1 among all yEI2, then x0 is the
closest match to y0EI2 among all xEI1. The simplest form of regular minimality
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FIG. 2. Regular minimality for sensory-physical matching: y0 is closer to x0 than any other y if and
only if x0 is closer to y0 than any other x (where xEI1, yEI2).

holds when the matched stimuli are identical (in their varying part), that is, when
the functions h and g are identities.
As an example, let x, y be unidimensional stimuli, say, weights placed on two
palms of a subject (left, I1, and right, I2, respectively), and let, for whatever
reason, among all y placed on the right palm the closest match to x on the left palm
be achieved at y=cx, where c is a constant. The regular minimality then simply
means that among all x placed on the left palm the one to appear the closest to y
on the right palm will be x=y/c. The regular minimality constraint, therefore,
allows one to speak of matched stimuli (xEI1, yEI2) without specifying which of the
two stimuli was matched to which.
Returning to the same–different comparisons, the value of yEI2 that appears as
close as possible to a fixed xEI1 is naturally defined as

arg min
y
k(x, y),

the value of y at which the mapping y Q k(x, y) reaches its minimum. Following a
tradition, this value can be called the point of subjective equality (in I2) for xEI1.
The point of subjective equality in I1 for yEI2 is defined analogously,

arg min
x
k(x, y).

According to the First Assumption of MDFS (Dzhafarov & Colonius, 2001), for a
fixed x, the function y Q k(x, y) achieves its global minimum at some value
y=h(x) (see Fig. 3, left), h being continuously differentiable. By symmetry, the
First Assumption also states (see Fig. 3, right) that for a fixed y, the function
x Q k(x, y) achieves its global minimum at some value x=g(y), g being continu-
ously differentiable. The regular minimality property holds, or, equivalently, k(x, y)
has regular minima, if g — h−1 (which implies that both g and h are diffeomorphisms
MQM). Rather than treating it as a separate assumption, it is convenient to con-
sider this requirement as part of the (amended) First Assumption of MDFS.

586 EHTIBAR N. DZHAFAROV



FIG. 3. Regular minimality for discrimination probabilities (two-dimensional stimuli): y0=
arg miny k(x0, y) if and only if x0=arg minx k(x, y0).

Once the regular minimality constraint is in place, the discrimination probability
functions can be brought to a canonical form by either of the following transforma-
tions (Dzhafarov, in press a; Dzhafarov & Colonius, 2001):

k(x, y)=k1[h(x), y]=k2[x, g(y)]. (1)

Clearly, both k1(x, y) and k2(x, y) achieve their minima at x=y, that is, the
subjective equality functions g and h for these canonical forms are identities (see
Fig. 4). As explained in Section 4, since

k2(x, y)=k1[h(x), h(y)] (2)

and h is a diffeomorphism, it is immaterial for the Fechnerian theory which of these
two (or other possible) canonical forms one uses. Assuming that k(x, y) is already
in a canonical form, the regular minimality constraint can be presented as

(A1a) (regular minimality) for any x and any y ] x,

k(x, x) < ˛k(x, y)
k(y, x).

(3)

In this form regular minimality has been introduced in Dzhafarov (in press a).
The First Assumption of MDFS includes, in addition, the following two state-
ments:

(A1b) (continuity) k(x, y) is continuous in (x, y);

(A1c) (monotonicity) for any x and any direction vector u ] 0, k(x, x+us)
and k(x+us, x) increase with s > 0 in a sufficiently small vicinity of s=0.
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FIG. 4. Regular minimality in a canonical form (two-dimensional stimuli): arg miny k(a, y)=
arg minx k(x, a)=a.

FIG. 5. The nonconstant self-similarity property of discrimination probabilities (one- and two-
dimensional stimuli).
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The discrimination probability function shown in Fig. 1 satisfies all the con-
straints constituting the First Assumption, including the regular minimality in a
canonical form. The First Assumption does not imply, however, that the minimum
level k(x, x) is constant across different x. If this does happen,

k(x, x) — const,

we say that k(x, y) possesses the constant self-similarity (or self-dissimilarity) prop-
erty. Otherwise k(x, y) exhibits nonconstant self-similarity (see Fig. 5):

k(x, x) ] const (4)

at least in some subregion of the stimulus spaceM. This is, for instance, the case for
k(x, y) shown in Fig. 1: the value of k(x, x) there increases with x.

3. EMPIRICAL EVIDENCE

Empirical data on same–different discrimination probabilities in continuous sti-
mulus spaces are scarce, but what is available seems to uphold the principle of
regular minimality while ruling out constant self-similarity as a general constraint.
In an experiment by Zimmer and Colonius (2000) listeners made same–different
judgments in response to successively presented pure fixed-frequency tones varying
in intensity (see Fig. 6). For fixed intensity values of the first tone, x, the discrimi-
nation probabilities k(x, y) in this experiment form characteristically V-shaped
curves with the minimum point at y=x; and the analogous fact is found for

FIG. 6. Discrimination probabilities in the experiment by Zimmer and Colonius (2000). The data
are shown for one observer in the format of Fig. 5 (upper panel). x (y) is the intensity of the tone pre-
sented first (second).

REGULAR MINIMALITY 589



k(x, y) with fixed intensity values of the second tone. The regular minimality,
therefore, holds here in a canonical form. At the same time, the minimum level
k(x, x) of the discrimination probability function prominently changes with inten-
sity x (nonconstant self-similarity).
The same pattern (regular minimality in a canonical form and nonconstant self-
similarity) is demonstrated in Fig. 7 which presents results of one of my recent
experiments. The observers made same–different judgments in response to two
horizontal synchronous apparent motions (two-flash stimuli) presented collinearly
at a 10 deg arc separation in a frontoparallel plane. The only possible physical dif-
ference between the two motions (the left-hand and the right-hand one) was their
amplitude (the distance between the two flashes), that varied between 5 and 45 min
arc. In this particular case the discrimination probabilities are to a high degree of
precision order-balanced,

k(x, y) — k(y, x), (5)

because of which they can be shown in a single graph, rather than in two, as in
Fig. 6. The results involving other observers and/or modified experimental designs
(e.g., successive presentation of two motions) generally do not show this order-
balance. In addition, they typically exhibit some constant error, a systematic
left–right or first–second asymmetry. In no case, however, can one reject the regular
minimality hypothesis, while the constancy of self-similarity can be rejected in most
cases (examples of data with a constant error are not shown because it is very diffi-
cult to visually assess a noncanonical form of regular minimality).
Indow, Robertson, von Grunau, and Fielder (1992) and Indow (1998) report
discrimination probabilities for side-by-side presented colors varying in CIE chro-
maticity–luminance coordinates (a three-dimensional continuous stimulus space).
With the right-hand color y serving as a reference stimulus, the discrimination
probabilities in this study reached their minimum level at x=y. The experiment
was not replicated with the left-hand color x used as a reference, so one cannot
check for the regular minimality constraint directly. It is reasonable to assume,
however, that k(x, y) for side-by-side presented colors is order-balanced, (5), and

FIG. 7. Discrimination probabilities for apparent motions varying in amplitude. The data are shown for
one observer in the format of Fig. 5 (upper panel). x (y) is the amplitude of the left-hand (right-hand) motion.
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consequently regular minimality holds here in a canonical form. Nonconstant self-
similarity is prominently present here too: thus, when the colors were presented on
a dark background and the reference color y changed from gray to red to yellow to
green to blue, the probability k(y, y) in one observer increased from 0.07 to 0.33.
With some caution one can also add to this list the often cited data by Rothkopf
(1957), whose listeners made same–different judgments in response to successively
presented Morse-coded letters. This stimulus space is discrete, and our definition of
regular minimality strictly speaking does not apply. It is still relevant, however, that
the probability of discriminating a given Morse letter (whether presented first or
second) is at its minimum when paired with the same Morse letter, but that this
minimum level changes from one letter to another. Additional evidence of the same
nature can be found in Krumhansl (1978) and Tversky (1977).

4. OTHER ASSUMPTIONS OF FECHNERIAN SCALING

MDFS is based on four assumptions, of which the First, Second, and Fourth
Assumptions constitute the core of the theory while the third assumption is treated
as optional. The modification of the first assumption that incorporates the distinc-
tion between two observation areas and the fundamental notion of regular mini-
mality is described in Section 2. Here, I consider the induced changes in the
remaining assumptions.
The discrimination probability function k(x, y) in the remainder is considered to
be in a canonical form, perhaps following an appropriate transformation, (1).
For any stimulus x and any direction vector u ] 0, it follows from the First
Assumption (with the regular minimality in a canonical form) that the psychometric
differentials of the first and second kind,

Y (1)x, u(s)=k(x, x+us)−k(x, x)

Y (2)x, u(s)=k(x+us, x)−k(x, x)
, s \ 0,

continuously decrease to zero with sQ 0+. The solutions for s of the equations

Y (1)x, u(s)=h

Y (2)x, u(s)=h

in an interval of sufficiently small h > 0 are called stimulus differentials,

s1=F
(1)
x, u(h)

s2=F
(2)
x, u(h).

The Second Assumption of MDFS is formulated in Dzhafarov and Colonius (2001)
and in Dzhafarov (2002) as a statement of the comeasurability in the small of
stimulus differentials of the first kind (or, by symmetry, second kind). It now has to
be amended to ensure, in addition, that stimulus differentials of the first kind are
comeasurable in the small with those of the second kind. (The comeasurability in
the small means that the ratio of two quantities tends to a positive finite limit as
both of them tend to zero.)

REGULAR MINIMALITY 591



(A2) For some fixed line element (i.e., a stimulus–direction pair) (x0, u0) and
i=1 or 2, the limit ratios

lim
hQ 0+

F (i)x0, u0 (h)
F (1)x, u(h)

=F1(x, u)

lim
hQ 0+

F (i)x0, u0 (h)
F (2)x, u(h)

=F2(x, u)

are finite, positive, and continuous in (x, u), for any (x, u).

Thus, instead of a single Fechner–Finsler metric function F(x, u) considered in the
previous publications we now have two, F1 and F2, for the stimuli belonging to the
first and the second observation area, respectively. (The designation of the metric
functions includes the name of Finsler because the ensuing Fechnerian metrics are
referred to in geometry as generalized Finsler metrics, with the Finsler metrics
proper being their prominent special case; for details see Dzhafarov & Colonius,
1999a, 2001.)
The properties of F1 and F2 are precisely the same as those of F in the previously
published theory. Thus, the positive Euler homogeneity,

F1(x, ku)=kF1(x, u)

F2(x, ku)=kF2(x, u)
, k > 0,

is proved by the same argument as in Dzhafarov and Colonius (2001). The so-called
Fundamental Theorem of MDFS is also proved as in Dzhafarov and Colonius
(2001), although its formulation changes to reflect the existence of the two kinds of
psychometric differentials.
(The symbol ’ connecting two expressions means their asymptotic equality, i.e.,
that their ratio tends to 1.)

Theorem 4.1 (Fundamental Theorem of MDFS). There exists a global
psychometric transformation F(h), continuously decreasing to zero with hQ 0+ and
one and the same for all psychometric differentials of both kinds, such that

F[k(x, x+us)−k(x, x)] ’ F1(x, u) s

F[k(x+us, x)−k(x, x)] ’ F2(x, u) s
as sQ 0+. (6)

The metric functions F1 and F2 are determined from k(x, y) uniquely and F asymp-
totically uniquely, up to multiplication by one and the same positive constant,

Fg
1 (x, u)=kF1(x, u),

Fg
2 (x, u)=kF2(x, u),

Fg(h) ’ kF(h), as hQ 0+.

Corollary 4.1. If k(x, y) is order-balanced,

k(x, y) — k(y, x),
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then

F1(x, u) — F2(x, u) — F(x, u). (7)

This is, of course, what one should expect intuitively: if the two observation
intervals are interchangeable, one does not have to distinguish F1 and F2.
Deferring until later a discussion of the optional Third Assumption,

(A3) ˛
F (1)x, u(h) ’ F

(1)
x, −u(h)

F (2)x, u(h) ’ F
(2)
x, −u(h)

as hQ 0+,

the Fourth Assumption of MDFS states that

(A4) for at least one line element (x0, u0) and i=1 or 2, Y
(i)
x0, u0 (s) regularly

varies at s=0+.

The notion of regular variation (at the origin) is used as in Dzhafarov (2002),
meaning that

lim
sQ 0+

Y (i)x0, u0 (ks)
Y (i)x0, u0 (s)

=c(k)

is finite, positive, and nonconstant. The nonconstancy requirement excludes slowly
varying functions, those with c(k) — 1, from the class of regularly varying ones,
which is a deviation from the standard mathematical usage (Bingham, Goldie, &
Teugels, 1987).
To prevent any confusion, the line elements (x0, u0) mentioned in the formula-
tions of the Second and the Fourth Assumptions of MDFS have nothing to do with
each other. Moreover, as shown in Dzhafarov (2002) and Dzhafarov and Colonius
(2001), the choice of (x0, u0) in both these assumptions is completely arbitrary.
Using the same reasoning as in Dzhafarov (2002) one arrives at the following
theorem, in which the unit-regularly varying function R(s) has the structure

R(s)=sa(s), s \ 0, (8)

with a(s) \ 0 being the slowly varying component of R(s),

lim
sQ 0+

a(ks)
a(s)
=1. (9)

Examples of R(s) continuously decreasing to zero with sQ 0+ are s, se s, s log 1s ,
s/log 1s , etc.

Theorem 4.2 (Main asymptotic representation). There is a positive constant m,
uniquely determined and called the psychometric order of the stimulus space, and
a unit-regularly varying function R(s), determined asymptotically uniquely and
continuously decreasing to zero with sQ 0+, such that for any (x, u),

Y (1)x, u(s)=k(x, x+us)−k(x, x) ’ Fm1 (x, u) R(s)
m

Y (2)x, u(s)=k(x+us, x)−k(x, x) ’ Fm2 (x, u) R(s)
m
, as sQ 0+. (10)
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In accordance with Dzhafarov and Colonius (2001), the contour formed by the
endpoints of vectors u satisfying

F1(x, u)=1

for a fixed xEI1 (the Fechnerian indicatrix associated with F1) is roughly similar to
the shape of the horizontal (parallel to stimulus space) cross-section of y Q k(x, y)
made at a very small elevation above the minimum level k(x, x); the smaller the
elevation the better the similarity. The interpretation of F2(x, u) in terms of
horizontal cross-sections of y Q k(y, x) is analogous.
The psychometric order m determines another aspect of the shape of the discri-
mination probability function, the degree of smoothness/cuspidality of the vertical
(perpendicular to stimulus space) cross-sections of k(x, y), for a fixed xEI1 or a
fixed yEI2, made through its point of minimum, (x, k(x, x)) or (y, k(y, y)), respec-
tively. Roughly, the lower tips of such cross-sections may range from Y-shaped
(needle-sharp, m < 1) to V-shaped (pencil-sharp, m=1) to U-shaped (rounded,
m > 1). According to the theorem above, this characteristic is one and the same for
all reference stimuli (fixed xEI1 or yEI2) and all directions u in which the cross-
section is made.
The logic of Fechnerian computations dictates that the metric functions F1 and
F2 induce two generally different Fechnerian (oriented) metrics, G1 and G2: one for
the stimuli belonging to the observation area I1, the other for those belonging to
I2. Put briefly (see Dzhafarov & Colonius, 2001, for an exhaustive treatment), the
logic is as follows. Let a Q x Q b denote an allowable path connecting a to b, that
is, a piecewise continuously differentiable function x(t), 0 [ t [ 1, taking values in
the stimulus space M, with x(0)=a and x(1)=b. The psychometric lengths
L1(a Q x Q b) and L2(a Q x Q b) of the path a Q x Q b in the two observation
areas are defined by

a, bEI1 S L1(a Q x Q b)=F
1

0
F1[x(t), ẋ(t)] dt

a, bEI2 S L2(a Q x Q b)=F
1

0
F2[x(t), ẋ(t)] dt.

(11)

The function x(1−t) is the path ‘‘opposite’’ to x(t), the same trajectory but
oriented from b to a; let it be denoted by a P x P b. For the subsequent develop-
ment it is useful to mention the easily verifiable fact that when the definition above
is applied to this opposite path a P x P b, we have

a, bEI1 S L1(a P x P b)=F
1

0
F1[x(t), −ẋ(t)] dt

a, bEI2 S L2(a P x P b)=F
1

0
F2[x(t), −ẋ(t)] dt.

(12)
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The Fechnerian metrics are the infima (whose metric properties can be easily
proved, see Dzhafarov & Colonius, 1999a, 2001) taken over all allowable paths,

a, bEI1 S G1(a, b)=inf L1(a Q x Q b)

a, bEI2 S G2(a, b)=inf L2(a Q x Q b).
(13)

As shown in Dzhafarov and Colonius (2001), thus defined metrics are invariant
under all diffeomorphisms of the stimulus space. In other words, the Fechnerian
distances G1(a, b) and G2(a, b) remain constant when one redefines the discrimina-
tion probability functions by

k(x, y)=k̃[H(x), H(y)],

where H is a diffeomorphism MQM. This is, in view of (2), the reason why either
of the two canonizing transformations in (1) can be used for computing both G1
and G2.
Note that unless one adopts the Third Assumption of MDFS, (A3), which
implies (see Dzhafarov & Colonius, 2001)

F1(x, u) — F1(x, −u)

F2(x, u) — F2(x, −u),
(14)

the Fechnerian distances are generally oriented,

G1(a, b) ] G1(a, b)

G2(a, b) ] G2(a, b).

The necessary and sufficient conditions for symmetry of Fechnerian metrics are
given in Dzhafarov and Colonius (2001).

5. BASIC CONSEQUENCES

Without mentioning this every time, all formal results stated in the remainder are
predicated on the core assumptions of MDFS: the First, Second, and Fourth. The
use of the Third Assumption, however, is always specified explicitly. The clause
‘‘under the Third Assumption’’ therefore should always be taken to mean ‘‘under
the Third Assumption added to the core assumptions of MDFS.’’ No assumptions
of MDFS imply the order-balance property, (5). The use of this property, therefore,
is also indicated explicitly.
Another convention adopted in the remainder is that all limit statements and
asymptotic equations of the type f(s) ’ g(s) or f(s)=o{g(s)} (i.e., f(s)/g(s)Q 1
and f(s)/g(s)Q 0, respectively) are tacitly predicated upon sQ 0+.
The function

w(x)=k(x, x)

is referred to as the minimum level function. The differential

Wx, u(s)=w(x+us)−w(x), s > 0,
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of this function at the line element (x, u) can be presented as

Wx, u(s)=w(x+us)−w(x)

=[k(x, x+us)−k(x, x)]−[k(x, x+us)−k(x+us, x+us)]

=[k(x, x+us)−k(x, x)]−{k[(x+us)−us, (x+us)]−k[(x+us), (x+us)]}

=Y(1)x, u(s)−Y
(2)
x+us, −u(s). (15)

Making use of (10) and the continuity of the metric functions F1 and F2, we have

Y (1)x, u(s) ’ F1(x, u)
m Rm(s)

Y (2)x+us, −u(s) ’ F2(x+us, −u)m Rm(s) ’ F2(x, −u)m Rm(s).

Then it follows from (15) that

F1(x, u)=F2(x, −u)Z Wx, u(s)=o{Rm(s)}

F1(x, u) ] F2(x, −u)Z Wx, u(s) ’ [F1(x, u)m−F2(x, −u)m] Rm(s).
(16)

The same differential Wx, u(s) can also be decomposed as

Wx, u(s)=w(x+us)−w(x)

=[k(x+us, x)−k(x, x)]−[k(x+us, x)−k(x+us, x+us)]

=[k(x+us, x)−k(x, x)]−{k[(x+us), (x+us)−us]−k[(x+us), (x+us)]}

=Y(2)x, u(s)−Y
(1)
x+us, −u(s), (17)

and by the same reasoning as above we get

F1(x, −u)=F2(x, u)Z Wx, u(s)=o{Rm(s)}

F1(x, −u) ] F2(x, u)Z Wx, u(s) ’ [F2(x, u)m−F1(x, −u)m] Rm(s).
(18)

As Wx, u(s) cannot be simultaneously o{Rm(s)} and asymptotically proportional to
Rm(s), from (16) and (18) we obtain

Theorem 5.1. For any line element (x, u), there are two possibilities: either

F1(x, u)=F2(x, −u)

F1(x, −u)=F2(x, u)
and Wx, u(s)=o{Rm(s)} (19)

or

F1(x, u) ] F2(x, −u)

F1(x, −u) ] F2(x, u)
and Wx, u(s) ’ ˛[F1(x, u)

m−F2(x, −u)m] Rm(s)

[F2(x, u)m−F1(x, −u)m] Rm(s).
(20)

I refer to the possibility (19) by saying that F1 and F2 are cross-balanced at (x, u);
otherwise, if (20), the two metric functions are cross-unbalanced at (x, u). In either
of these cases

F1(x, u)m−F2(x, −u)m=F2(x, u)m−F1(x, −u)m,
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whence we have

Theorem 5.2. The psychometric order m and the Fechner–Finsler metric functions
F1 and F2 are related by

F1(x, u)m+F1(x, −u)m — F2(x, u)m+F2(x, −u)m. (21)

If the Third Assumption of MDFS holds, the combination of (21) and (14)
implies the cross-balanced relationship (19), whence we have

Theorem 5.3. Under the Third Assumption of MDFS, the metric functions F1
and F2 are identical and symmetrical at all line elements,

F1(x, u) — F2(x, u) — F1(x, −u) — F2(x, −u), (22)

and the differentials Wx, u(s) are all o{Rm(s)}.

Due to Corollary 4.1, for order-balanced k(x, y) the relationship (21) holds tri-
vially. In general, however, the single metric function F(x, u) in (7) does not have to
be cross-balanced at any line element (x, u).

Theorem 5.4. For order-balanced discrimination probability functions, the metric
function F1 and F2 are cross-balanced at (x, u) if and only if at this line element they
are symmetrical, (14).

The truth of this statement is obvious.

6. CROSS-BALANCE AND SELF-SIMILARITY

The metric functions F1 and F2 are said to be cross-balanced if they are cross-
balanced at every line element (x, u),

F1(x, u) — F2(x, −u). (23)

F1 and F2 are said to be cross-unbalanced if this identity does not hold, that is, if the
two metric functions are cross-unbalanced at least at one line element (x, u). It
should be apparent that in the case of cross-balanced F1 and F2 all Fechnerian
computations may be confined to just one of them, the Fechnerian computations
involving the other one being merely their mirror-reflection. In particular, for cross-
balanced F1 and F2,

G1(a, b) — G2(b, a).

Theorem 5.3 tells us that the Third Assumption of MDFS implies this case. In fact
it implies

G1(a, b) — G1(b, a) — G2(a, b) — G2(b, a).

I relate now the notion of cross-(un)balance to that of (non)constant self-
similarity.
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6.1. Case I: Constant Self-Similarity

If the discrimination probability function k(x, y) possesses the constant self-
similarity property, then

Wx, u(s)=w(x+us)−w(x) — 0,

whence we conclude, due to Theorem 5.1, that F1 and F2 are necessarily cross-
balanced. The Third Assumption of MDFS may or may not hold in this case, m can
be any positive number, and R(s) any unit-regularly varying function. As a result,
this case allows for all possible shapes considered in Dzhafarov (2002) and
Dzhafarov and Colonius (2001) for the discrimination probability functions taken
in the vicinity of their minima.
This is by far the simplest theoretical possibility, but we know from the empirical
data considered in Section 3 that it cannot be posited as a general rule.

6.2. Case IIa: Nonconstant Self-Similarity with Cross-Unbalanced Metric Functions

Under nonconstant self-similarity, if F1 and F2 are cross-unbalanced (which, as
we know from Theorem 5.3, rules out the Third Assumption of MDFS), then there
is a line element (x, u) at which one of the metric functions exceeds the other, say,

F1(x, u) > F2(x, −u).

By continuity of the two functions this inequality should be preserved in some
neighborhood of (x, u). In particular, there should exist a sufficiently small interval
0 [ t < T on which

F1(x+ut, u) > F2(x+ut, −u).

Then, by Theorem 5.1, at this (x, u) and for 0 [ t < t+s < T,

w[x+u(t+s)]−w(x+ut)=Wx, u(t+s)−Wx, u(t)

’ [F1(x+ut, u)m−F2(x+ut, −u)m] Rm(s). (24)

As Wx, u(t+s)−Wx, u(t) consequently has to be positive for sufficiently small s > 0 at
every t, the function Wx, u(t) is strictly increasing on 0 [ t < T.
We are in the position now to derive the first truly remarkable result of the
present development: that m in (24) cannot be anything but 1, and that R(s) can
always be replaced with s.
In view of (8) and (9), it follows from (24) and the theory of regular variation
(Bingham et al., 1987, pp. 44–45) that

Wx, u(t+s)−Wx, u(t)
s

’ k · sm−1am(s), k > 0.
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The theory of regular variation also tells us (e.g., Bingham et al., 1987, pp. 16, 22)
that

sm−1am(s)Q ˛0 if m > 1
. if m < 1,

(25)

whence

lim
sQ 0+

Wx, u(t+s)−Wx, u(t)
s

— ˛0 if m > 1
. if m < 1.

Both these limit values, however, are impossible: zero would contradict the fact that
Wx, u(t) is strictly increasing, while infinity would contradict the famous theorem by
Lebesgue that an increasing function should have a finite derivative almost every-
where (see, e.g., Hewitt & Stromberg, 1965, pp. 264–266).
Putting, as a result, m=1, we have

Wx, u(t+s)−Wx, u(t)
s

’ k · a(s), k > 0,

and by the same reasoning as before we exclude the possibilities a(s)Q 0+ or
a(s)Q.. The possibility that a(s) does not tend to any limit (as sQ 0+) would
also contradict the Lebesgue theorem just mentioned. It must be, consequently, that
a(s) tends to a positive finite quantity, because of which

R(s)=sa(s) ’ cs, c > 0.

Since R(s) in Theorem 4.2 is determined only asymptotically uniquely, one can with
no loss of generality put

R(s)=cs, c > 0.

The asymptotic representations of psychometric differentials, (10), then become

Y (1)x, u(s)=k(x, x+us)−k(x, x) ’ cF1(x, u) s

Y (2)x, u(s)=k(x+us, x)−k(x, x) ’ cF2(x, u) s.

As a final step, due to the uniqueness part of the fundamental theorem of MDFS
(Section 4), one can always multiply F1 and F2 by an arbitrary positive constant,
and we can choose this constant to make c in the previous equations equal to 1.
Thus we arrive at

Theorem 6.1 (Linear version of MDFS). Under nonconstant self-similarity, if
the metric functions F1 and F2 are cross-unbalanced, then

Y (1)x, u(s)=k(x, x+us)−k(x, x) ’ F1(x, u) s

Y (2)x, u(s)=k(x+us, x)−k(x, x) ’ F2(x, u) s,
(26)
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and

Wx, u(s)=w(x+us)−w(x) ’ [F1(x, u)−F2(x, −u)] s. (27)

The last equation can also be written as

Wx, u(s)=w(x+us)−w(x) ’ [F2(x, u)−F1(x, −u)] s, (28)

because Theorem 5.2 now specializes as

Theorem 6.2. Under nonconstant self-similarity, if the metric functions F1 and F2
are cross-unbalanced, then

F1(x, u)+F1(x, −u) — F2(x, u)+F2(x, −u). (29)

Observe that due to the equality of (27) and (28),

Wx, −u(s) ’ −Wx, u(s),

and

dWx, u(s)
ds
:
s=0+
= lim
sQ 0+

Wx, u(s)
s
= lim
sQ 0+

Wx, −u(s)
−s

= lim
sQ 0−

Wx, u(s)
s
=
dWx, u(s)
ds
:
s=0−
=
dWx, u(s)
ds
:
s=0
.

This deserves to be emphasized.

Theorem 6.3. Under nonconstant self-similarity, if the metric functions F1 and F2
are cross-unbalanced, then the minimum level function w(x) is continuously differen-
tiable at any point in any direction, and

dw(x+us)
ds
:
s=0
=
dWx, u(s)
ds
:
s=0
=˛F1(x, u)−F2(x, −u)
F2(x, u)−F1(x, −u).

(30)

The continuity of the directional derivatives in the statement of the theorem
follows, of course, from the continuity of the metric functions.
Equation (30) acquires an especially simple form if one assumes that k(x, y) is
order-balanced, (5), in which case, due to Corollary 4.1, we have

dw(x+us)
ds
:
s=0
=F(x, u)−F(x, −u). (31)

To better appreciate the implications of the linear version of MDFS, consider the
case of unidimensional stimuli (see also Dzhafarov, 2001). Equation (26) in this case
acquires the form

k(x, x±s)−k(x, x) ’ F1(x, ±1) s=F
±
1 (x) s

k(x±s, x)−k(x, x) ’ F2(x, ±1) s=F
±
2 (x) s
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(as sQ 0+), with

F+1 (x)+F
−
1 (x)=F

+
2 (x)+F

−
2 (x)

and

F+1 (x)−F
−
2 (x)=F

+
2 (x)−F

−
1 (x)=

dw(x)
dx
. (32)

Figure 8 illustrates the predicted appearance of the discrimination probability
functions k(x, y) in a very small vicinity of x=y=a and its relation to the
minimum level functions w(x)=k(x, x) in the same vicinity. In the order-balanced
case the slope of the minimum level function is the same as the difference of the
slopes of the right-hand and left-hand branches of k(x, y),

F+(x)−F−(x)=
dw(x)
dx
, (33)

which follows from (32) on dropping the indices at the metric functions in accor-
dance with Corollary 4.1.

FIG. 8. Case IIa: the appearance of k(x, y) (solid lines) and w(x) (interrupted lines) in a very small
vicinity of x=y=a. Left panel shows k(x, y) at x=a, right panel at y=a; the bottom panel shows the
order-balanced case. k(a) denotes dw(a)da and equals F

+
1 (a)−F

−
2 (a)=F

+
2 (a)−F

−
1 (a). In the order-balanced

case, k(a)=F+(x)−F−(x).
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6.3. Case IIa (continued): Consequences for Psychometric Length and Fechnerian
Distance

Returning to the general statement of Theorem 6.1, consider an allowable path
a Q x Q b as defined in Section 4. With a, bEI1, the psychometric length
L1(a Q x Q b) of this path is defined by (11):

L1(a Q x Q b)=F
1

0
F1[x(t), ẋ(t)] dt.

With a, bEI2, using (12), the psychometric length L2 of the opposite path a P x P b
is

L2(a P x P b)=F
1

0
F2[x(t), −ẋ(t)] dt.

Then

L1(a Q x Q b)−L2(a P x P b)=F
1

0
{F1[x(t), ẋ(t)]−F2[x(t), −ẋ(t)]} dt.

But it follows from (30) that

F1[x(t), ẋ(t)]−F2[x(t), −ẋ(t)]=
dw[x(t)+ẋ(t) s]

ds
:
s=0

=lim
sQ 0

w[x(t)+ẋ(t) s]−w[x(t)]
s

=lim
sQ 0

w[x(t+s)]−w[x(t)]
s

=
dw[x(t)]
dt

whence

L1(a Q x Q b)−L2(a P x P b)=F
1

0

dw[x(t)]
dt

dt=F
1

0
dw[x(t)]=w(b)−w(a).

This establishes yet another remarkable fact: the difference between the psychome-
tric lengths in question is path-invariant, it only depends on the endpoints a and b.
By analogous reasoning one shows that

L2(a Q x Q b)−L1(a P x P b)=w(b)−w(a)

and proves thereby

Theorem 6.4. Under nonconstant self-similarity, if the metric functions F1 and F2
are cross-unbalanced, then

L1(a Q x Q b)−L2(a P x P b)=L2(a Q y Q b)−L1(a P y P b)=w(b)−w(a),
(34)

irrespective of the paths x(t) and y(t) connecting the stimuli a and b.
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It follows that

L1(a Q x Q b)+L1(a P y P b)=L2(a Q y Q b)+L2(a P x P b),

and on observing that a Q x Q b and a P y P b can always be redefined as an
allowable closed loop a Q x Q a, and vice versa, any such closed loop can be
redefined as a pair of allowable paths a Q x Q b, a P y P b, we have

Theorem 6.5. Under nonconstant self-similarity, if the metric functions F1 and F2
are cross-unbalanced, then for any closed loop a Q x Q a,

L1(a Q x Q a)=L2(a Q x Q a). (35)

A relationship analogous to that stated in Theorem 6.4 also exists between the
Fechnerian metrics G1 and G2. In reference to (13), the equation

inf L1(a Q x Q b)=G1(a, b)

implies, of course,

inf{L1(a Q x Q b)−[w(b)−w(a)]}=G1(a, b)−[w(b)−w(a)],

which, due to (34), leads to

G2(b, a)=inf L2(a P x P b)=G1(a, b)−[w(b)−w(a)].

Using the same reasoning with G2(a, b) and G1(b, a) we arrive at (use Fig. 9 as an
illustration)

Theorem 6.6. Under nonconstant self-similarity, if the metric functions F1 and F2
are cross-unbalanced, then

G1(a, b)−G2(b, a)=G2(a, b)−G1(b, a)=w(b)−w(a) (36)

FIG. 9. The difference between the G1 distance from a to b and the G2 distance from b to a equals
w(b)−w(a). Exchanging G1 with G2 leaves this statement true. The total G1 distance from a to b and
back is the same as the total G2 distance from a to b and back.
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and

G1(a, b)+G1(b, a)=G2(a, b)+G2(b, a). (37)

If the Fechnerian metric is derived from order-balanced k(x, y), (5), then
G1 — G2 — G, and the two formulas in the theorem reduce to

G(a, b)−G(b, a)=w(b)−w(a). (38)

6.4. Case IIb: Nonconstant Self-Similarity with Cross-Balanced Metric Functions

As we know, constant self-similarity implies that the metric functions are cross-
balanced. The reverse, however, is not true: it is possible that the minimum level
function w(x) is nonconstant while

F1(x, u) — F2(x, −u).

If the Third Assumption of MDFS holds true, the nonconstant w(x) may even
coexist with metric functions F1 and F2 that are both identical and symmetrical and
hence also cross-balanced (see Theorem 5.3). From Theorem 5.1 we know,
however, that with cross-balanced metric functions all variations in the value of
w(x) should have a higher order of infinitesimality than Rm(s),

Wx, u(s)=w(x+us)−w(x)=o{Rm(s)}, (39)

for all (x, u).
The restrictions imposed on m and R(s) by (39) are not as rigid as in the pre-
viously considered Case IIa. Nevertheless one can show by essentially the same
argument as above that m in (39) cannot exceed 1. Indeed, if m > 1, then it follows
from (25) that

R(s)=smam(s)=o{s},

because of which and (39),

Wx, u(s)=o{s}.

Then

dWx, u(s)
ds
:
s=0+

— 0,

which contradicts the nonconstancy of w(x). We have, as a result,

Theorem 6.7. Under nonconstant self-similarity, if the metric functions F1 and F2
are cross-balanced, then the psychometric order m is less than or equal to 1.

No restrictions seem to be imposed on the possible structure of R(s) if m < 1 (see
Fig. 10, where R(s) is chosen to be s). One can show, however, that R(s) is subject
to certain constraints if m=1, that is, if for any line element (x, u),

Wx, u(s)=o{sa(s)}. (40)
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FIG. 10. Case IIb, with m < 1, R(s)=s. The format is the same as in Fig. 7. k(a) here is unrelated to
F+1 (a), F

−
2 (a), F

+
2 (a), F

−
1 (a). In the order-balanced case, F

+(x)=F−(x).

We know (see, e.g., Bruckner, 1978, Chap. 4; or Hewitt & Stromberg, 1965,
Chap. 5) that the Dini derivatives

lim sup
sQ 0+

Wx, u(s)
s
, lim inf

sQ 0+

Wx, u(s)
s

exist for every (x, u) and that at least for some (x, u) they do not vanish simulta-
neously (the latter happens if and only if the function is constant). Choosing such
an (x, u) and denoting one of the nonzero Dini derivatives by D (a finite quantity,
., or −.), one can find a sequence {si}|

.

i=1 Q 0 for which

lim
iQ.

Wx, u(si)
si
=D ] 0.

At the same time, (40) implies that

lim
iQ.

Wx, u(si)/si
a(si)

=lim
iQ.

Wx, u(si)
sia(si)

=0,

which is only possible if a(si)Q.. In turn, this means that

lim sup
sQ 0+

a(s)=.. (41)

I summarize this result as
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Theorem 6.8. Under nonconstant self-similarity, if the metric functions F1 and F2
are cross-balanced and m=1, then R(s)=sa(s) with limsup a(s)=. (as sQ 0+).

As a cannot attain negative values, its limit superior in general can only be 0, a
finite positive number, or infinity, the respective examples being a(s)=1/log(1/s),
a(s)=1, and a(s)=log(1/s). The result just obtained tells us that

m=1, R(s)=s log
1
s

is a possible combination in the case being considered, whereas

m=1, R(s)=s

is not. Note that the latter is the only possible solution for Case IIa.

7. CONCLUSION

To summarize our main results, the recognition of the simple fact that stimuli
presented pairwise for same–different judgments belong to distinct observation
areas (essentially, different stimulus spaces) forces one to modify the underlying
assumptions of MDFS.
The most important of these modifications is the hypothesis that the discrimina-
tion probability functions k(x, y) possess regular minima, which means that
(following, if necessary, an appropriate transformations of the physical measure-
ments for the stimuli belonging to one of the observation areas)

k(x, x) < ˛k(x, y)
k(y, x)

,

for any y ] x. Intuitively, it seems highly implausible that this fundamental con-
straint may be violated, and the available empirical data corroborate it.
The remaining emendations in the underlying assumptions of MDFS are
relatively straightforward, their thrust being in that one has to deal with two
Fechnerian metrics, G1(a, b) and G2(a, b) (one for each of the observation areas,
I1 and I2), induced by two Fechner–Finsler metric functions,

F1(x, u)= lim
sQ 0+

m
`k(x, x+us)−k(x, x)

R(s)

F2(x, u)= lim
sQ 0+

m
`k(x+us, x)−k(x, x)

R(s)
,

where m > 0 is the psychometric order of the stimulus space, and R(s) is a unit-
regularly varying function. F1, F2, and m are interrelated by

F1(x, u)m+F1(x, −u)m — F2(x, u)m+F2(x, −u)m.

As it turns out, the theory of MDFS leads to very different results depending on
two circumstances: (a) whether the minimum level function k(x, x) is constant; and
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(b) whether the metric functions F1 and F2 are cross-balanced. The cross-balance
means

F1(x, u) — F2(x, −u),

and it is implied by but does not imply the constancy of k(x, x) (constant self-
similarity property). This leaves us with three cases to consider.

Case I: Constant self-similarity holds (hence the metric function are cross-
balanced). In this case m can be any positive number and R(s) any unit-regularly
varying function. Empirical data definitely reject the possibility that this case may
hold universally.

Case IIa: Constant self-similarity does not hold and the metric functions are
cross-unbalanced. This case leads to the linear version of MDFS (m=1, R(s) — s)
as the only possibility:

F1(x, u)= lim
sQ 0+

k(x, x+us)−k(x, x)
s

F2(x, u)= lim
sQ 0+

k(x+us, x)−k(x, x)
s

.

Among the most remarkable consequences of these equations is that the slope of
the minimum level function in any direction u,

lim
sQ 0+

k(x+us, x+us) −k(x, x)
s

,

equals

F1(x, u)−F2(x, −u)=F2(x, u)−F1(x, −u)

and that

G1(a, b)−G2(b, a)=G2(a, b)−G1(b, a)=k(b, b)−k(a, a).

Case IIb: Constant self-similarity does not hold but the metric functions are cross-
balanced. In this case either m < 1, with R(s) being an arbitrary unit-regularly
varying function, or m=1, with some restrictions on the possible structure of R(s).
These restrictions, in particular, rule out the possibility m=1, R(s) — s arrived at in
the previous case.

It is very surprising that Cases I and IIb cannot be viewed as special or limit forms
of Case IIa and that Case I cannot be viewed as a special or limit form of Case IIb.
Indeed, suppose that neither the constant self-similarity nor the cross-balance of the
metric functions are inherent properties of discrimination; they may happen to hold
but do not hold generally. Then one can begin with Case IIa and hope to achieve
Case IIb or Case I by, respectively, gradually diminishing the cross-unbalance of
the metric functions or gradually flattening the minimum level function. This would
not work, however. Within Case IIa the cross-unbalance, F1(x, u)−F2(x, −u), and
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the slope of the minimum level function can only be reduced to zero simulta-
neously, so one cannot get to Case IIb at all. What one eventually reaches when
they both reach zero (at all x, u) is a special form of Case I, with m=1, R(s) — s, all
other combinations of m and R(s) being lost. Analogously one shows that Case IIb
cannot be gradually transformed into Case I without losing combinations of m and
R(s) that otherwise are perfectly compatible with Case I. With some caution, one
could say that Cases I and IIb are singularities with respect to Case IIa, and Case I
is a singularity with respect to Case IIb.
While Case I is incompatible with the empirical data mentioned in Section 3, it
remains to be seen whether one of the Cases IIa and IIb can be ruled out by empir-
ical evidence in favor of the other.

REFERENCES

Bingham, N. H., Goldie, C. M., & Teugels, J. L. (1987). Regular variation. Cambridge, UK: Cambridge
University Press.

Bruckner, A. M. (1978). Differentiation of real functions. Berlin: Springer-Verlag.

Dzhafarov, E. N. (2001). Fechnerian scaling and Thurstonian modeling. In E. Sommerfeld, R. Kompass,
& T. Lachmann (Eds.), Fechner Day 2001 (pp. 42–47). Lengerich: Pabst Science.

Dzhafarov, E. N. (2002). Multidimensional Fechnerian scaling: Regular variation version. Journal of
Mathematical Psychology, 46, 226–244.

Dzhafarov, E. N. (in press, a). Multidimensional Fechnerian scaling: Probability-distance hypothesis.
Journal of Mathematical Psychology.

Dzhafarov, E. N. (in press, b). Perceptual separability of stimulus dimensions: A Fechnerian approach.
In C. Kaernbach, E. Schroger, & H. Muller (Eds.), Psychophysics beyond sensation: Laws and
invariants of human cognition. Mahwah, NJ: Erlbaum.

Dzhafarov, E. N., & Colonius, H. (1999a). Fechnerian metrics in unidimensional and multidimensional
stimulus spaces. Psychonomic Bulletin and Review, 6, 239–268.

Dzhafarov, E. N., & Colonius, H. (1999b). Fechnerian metrics. In P. R. Kileen & W. R. Uttal (Eds.),
Looking back: The end of the 20th Century psychophysics (pp. 111–116). Tempe, AZ: Arizona Univer-
sity Press.

Dzhafarov, E. N., & Colonius, H. (2001). Multidimensional Fechnerian scaling: Basics. Journal of
Mathematical Psychology, 45, 670–719.

Hewitt, E., & Stromberg, K. (1965). Real and abstract analysis. New York: Springer-Verlag.

Indow, T. (1998). Parallel shift of judgment-characteristic curves according to the context in cutaneous
and color discrimination. In C. E. Dowling, F. S. Roberts, & P. Theuns (Eds.), Recent progress in
mathematical psychology (pp. 47–63). Mahwah, NJ: Erlbaum.

Indow, T., Robertson, A. R., von Grunau, M., & Fielder, G.H. (1992). Discrimination ellipsoids of
aperture and simulated surface colors by matching and paired comparison. Color Research and
Applications, 17, 6–23.

Krumhansl, C. L. (1978). Concerning the applicability of geometric models to similarity data: The
interrelationship between similarity and spatial density. Psychological Review, 85, 445–463.

Rothkopf, E. Z. (1957). A measure of stimulus similarity and errors in some paired-associate learning
tasks. Journal of Experimental Psychology, 53, 94–101.

Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327–352.

Zimmer, K., & Colonius, H. (2000). Testing a new theory of Fechnerian scaling: The case of auditory
intensity discrimination. Paper presented at the 140th Meeting of the Acoustical Society of America.

Received: June 29, 2001; published online: April 19, 2002

608 EHTIBAR N. DZHAFAROV


	1. INTRODUCTION
	FIG. 1

	2. REGULAR MINIMALITY AND NONCONSTANT SELF-SIMILARITY
	FIG. 2
	FIG. 3
	FIG. 4
	FIG. 5

	3. EMPIRICAL EVIDENCE
	FIG. 6
	FIG. 7

	4. OTHER ASSUMPTIONS OF FECHNERIAN SCALING
	5. BASIC CONSEQUENCES
	6. CROSS-BALANCE AND SELF-SIMILARITY
	FIG. 8
	FIG. 9
	FIG. 10

	7. CONCLUSION
	REFERENCES

