Working memory

PSY 200
Greg Francis
Lecture 16

A problem with IQ tests.

Current thought, awareness
- extension of short-term memory
- small capacity
- rapid forgetting
- Processor of information
 - not a storage device
 - hypothesizes mechanisms that lead to memory properties

Working memory

A problem with IQ tests.

Current thought, awareness
- extension of short-term memory
- small capacity
- rapid forgetting
- Processor of information
 - not a storage device
 - hypothesizes mechanisms that lead to memory properties

Phonological loop

Two components
- Articulatory control process (ACP)
 - converts non-speech information into speech code
 - rehearsal / refresh
- Phonological store (PS)
 - similar to how we first described STM (items decay from memory)
 - Refresh restarts the decay process

Loop capacity

How many items can be kept in the phonological loop?
- Depends on two factors
 - Duration before decay from PS
 - Speed of rehearsal
 - Spinning coins!

Magic number?

- We earlier noted that memory span was about 7 items (+/- 2)
- The phonological loop suggests that it is not the number of items but their rehearsal duration
- To recall a list of items you must rehearse them all before any of them fade
 - The duration of decay in the PS
- Memory span should follow the equation
 - Span = (Rehearsal Rate) X (PS decay time)
- Measure memory span (s): around 7 items
- Measure verbal rehearsal rate (r): around 4 items per second for English speakers
- Estimate duration of decay in PS (d)
 - d=1.75 seconds

Effect of rehearsal rate

- Capacity of the phonological loop depends on the rate of rehearsal (r)
- A set of items that takes longer to rehearse should be harder to remember
 - more likely that some items will drop out before you get back to the first item
Effect of rehearsal rate

- Explains differences across groups of people
- Age effects in children
- This implies that it is not the loop size that changes with age, but the rate of rehearsal

\[\text{Span} = 1.68 \times \text{Oral Reading Rate} + 0.71 \]

Word length effect

- Memory span is related to the length of words
 - Number of syllables
- Nicely matched by changes in reading speed
 - Rate of rehearsal

CogLab data

- The CogLab experiment on memory span shows data in agreement with our expectations (169 subjects)

Language effects

- Some languages are spoken more quickly than others
- Should allow larger memory span
 - it does

Relation to IQ

- Ellis & Henley (1980)
 - investigated complaints about WISC intelligence scores
 - Welsh children tended to score lower than English children
- Part of the exam checks memory span
 - and the slower rate of speech in Welsh partly explains the difference
 - bilingual Welsh students tested in English got better scores than when tested in Welsh

Articulatory suppression

- Subject sees (hears) a list of phonemes
- Also repeats a phrase over and over
 - e.g., "tippy-toe, tippy-toe, tippy-toe,..."
- Recall is worse
 - True for both auditory and visual presentation
 - (Recall for visual may be better than auditory because there is some information in the visuospatial sketchpad as well)
Articulatory suppression
- Repeating phrase ties up the ACP
 - Without rehearsal more forgetting occurs

Phonological similarity
- Memory of a list of items is worse when the items sound the same

Phonological similarity
- All items are stored in phonological loop
 - Similar sounding items interfere with each other in the phonological loop
 - Two possibilities:
 » 1) harder to rehearse (effect in the ACP)
 » 2) fade more quickly (effect in the PS)

Locus of similarity effect
- Studies find a phonological similarity effect for auditory stimuli under articulatory suppression
 - We suggested two possibilities:
 » 1) harder to rehearse (effect in the ACP)
 » 2) fade more quickly (effect in the PS)
 - Since the phonological similarity effect is there even when the ACP is not involved, it must be possibility 2 (in the PS)

CogLab data
- The CogLab experiment on phonological similarity shows data in (somewhat) agreement with our expectations (161 subjects)
 - Ideally want parallel lines
Irrelevant speech effect

- Does irrelevant “background” sound affect memory?
 - E.g., studying with the TV on
- Three groups of subjects recall consonants
 - 1) no background ▶️ best
 - 2) background = nonsense words ▶️ worst
 - 3) background = noise bursts

The presence of phonemes in the background is critical to the effect
- strong effect when background is spoken in German, even for English speakers
- Suggests that background phonemes interfere in the PS
- Study with classical music if you need something!

Conclusions

- Data accounted for by phonological loop
 - word length effect
 - phonological similarity
 - articulatory suppression
 - irrelevant speech effect
- Don’t listen to lyrical music while studying
 - Classical music is fine

Next time

- Review for Exam 2
- After exam 2
- Encoding specificity
- CogLab on Encoding specificity due
- What to do if you are drunk while studying for an exam.