What is our national security threat?

VARIABLES
factors that affect data e.g. study performance of college students taking a statistics course
variables include
• teaching style
• age
• SAT scores
• class grade
• study effort
• hair color...

DEPENDENT VARIABLES
e.g.
class grade GRE scores

INDEPENDENT VARIABLES
two types
1. researcher manipulates variable e.g. drug dosage, teaching style,...
2. variable classifies e.g. hair color, eye color, SAT scores,...

levels of variables
independent variables can have different levels
e.g.
three methods of teaching style

1. Lecture.
2. Discussion.
3. Videoconferencing
EXAMPLE
gasoline type affect car speed?
take a car
fill it with different types of gasoline
measure top speed
keep many things constant
• same driver
• same car
• same course
• same weather
•
if you started changing these, they would become independent variables

VARIABLES
independent variable
gasoline type
levels of independent variable
Amoco, Sunoco, Crystal Flash, Marathon,...
dependent variable
auto speed

MEASUREMENT
studies need to identify variables and measure them
different variables have different scales of measurement
four scales of measurement: least precise to most precise
• nominal
• ordinal
• interval
• ratio

NOMINAL SCALE
classification of objects into categories
e.g.
nationality
color of eyes
gender
names of objects
no order to the categories!

NOMINAL SCALE
two key properties
1. data categories are mutually exclusive.
2. data categories have no logical order.
 numbers can designate categories
 1—blue eyes
 2—brown eyes
 3—green eyes
but the order of numbers does not imply order of categories, because there really is no order

ORDINAL SCALE
ordered classification
e.g.
grading system A,B,C,D,F
warmth: cold, cool, warm, hot
aggressive, timid
order is important and means something
ORDINAL SCALE

numbers can be used to designate categories
e.g. warmth
1. cold
2. cool
3. warm
4. hot
order of numbers agrees with order of categories

ORDINAL SCALE

but size of number does not correspond to amount of relevant characteristic
e.g.
warm (3) does not necessarily have 2 more units of warmth than cold (1)

USING SCALES

One needs to pick items that have a “natural” scale to convey certain types of information
Thus, for example, colors are typically at the nominal scale of measurement
this makes them a poor choice for labeling of ordinal data because people do not automatically know what the different colors mean
this is a problem for the National security warning system, which uses colors to indicate different threat levels
Which is more severe: green threat or blue threat?

MATCHING SCALES

the problem is that the scales of threat (ordinal scale) and color (nominal scale) do not match. Thus, news reports of the threat level invariably do not list only the color but also the associated phrase with each report.
The color scale is of no use at all.

INTERVAL SCALE

equal unit scale
 e.g.
 • temperature (Fahrenheit or Celsius)
 • IQ scores (try to be)
 • most tests
 no beginning to scale
 zero point is just another category
INTERVAL SCALE

numbers can be used to designate categories
e.g.
• 22° F → level of heat
• 25° F → level of heat
• 28° F → level of heat
order of numbers agrees with order of categories
number differences agree with characteristic differences (e.g., 3° F)

WHY ZERO MATTERS

I can create an equivalent interval scale that preserves all the differences

$$\text{NEW IQ} = \text{OLD IQ} + 20$$
differences are still the same

- $150 \rightarrow 170$
- $100 \rightarrow 120$
- $50 \rightarrow 70$

but the ratios are all different 170 is not 1.5 times 120! Multiplication makes no sense!

if zero meant absence of trait, I could not create an equivalent interval scale, zero would have to correspond to zero, and nothing else

INTERVAL SCALE

- 50 IQ
- 100 IQ
- 150 IQ

an adult with a 50 IQ should have 50 fewer units of intelligence than a person with a 100 IQ
a person with a 100 IQ should have 50 fewer units of intelligence than a person with a 150 IQ
however, you cannot say that a genius (150 IQ) is 1.5 times as intelligent as an average (100 IQ)

0 temperature does not mean no heat (in F and C)
0 IQ does not mean no intelligence
50° F IS not twice as hot as 25° F.
an IQ of 100 is not twice as smart as an IQ of 50

RATIO SCALE

what we normally think of as measurement
e.g.

- height
- weight
- energy

zero point corresponds to the lack of a characteristic
RATIO SCALE

numbers can be used to designate categories
e.g.
• 25 meters → distance
• 5 meters → distance
• 0 meters → no distance
order of numbers agrees with order of categories
number differences agree with characteristic differences

RATIO SCALE

Kelvin temperature scale measures heat energy
e.g.
• 0° K → no heat energy
• 25° K → heat energy
• 50° K → heat energy

RATIO SCALE

zero point
0 distance means no distance
0° K temperature means no heat
50 meters is twice as far as 25 meters
50° K is two times as much heat energy as 25° K.

MEASUREMENT SCALE

how do you tell what scale is appropriate?
measures at a “higher” scale can also be used at a lower scale, but not vice-versa
the correct scale often depends on how you intend to use the data, and not so much on the intrinsic properties of the things you measure
e.g. I can use person names as
• nominal scale (code different people)
• ordinal scale (alphabetize by name)

SCALES

qualitative variables: generally discrete categories
• nominal data
• ordinal data
quantitative variables: generally continuous
• interval data
• ratio data
sometimes data looks like it is qualitative when it is actually quantitative (e.g., temperature readings do not usually use decimals, but they could)
POPULATION
all members of a specified group
e.g.,
• all students in this class
• all Purdue students
• all patients with Alzheimer’s disease

measure of a population characteristic is called a parameter
e.g., mean grade in class, highest grade in class, lowest grade in class, ...

SAMPLE
a subset of all members of a specified group, e.g.
• all students in this class, relative to all Purdue students
• all Purdue students, relative to all college students nationwide
• all Alzheimer’s patients, relative to all ill patients

measures of a sample characteristic are called statistics (e.g., mean grade in class, highest grade in class, lowest grade in class)

we will use it to infer properties of the corresponding population

NEXT TIME
working with data
displaying data
summarizing data

Why the space shuttle Challenger blew up.

CONCLUSIONS
variables
dependent & independent
measurement scales
important issues for interpreting data
important for applying statistical approaches