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In their reply to my criticism of the published findings in Piff et al. (2012a), Piff et al. 
(2012b) proposed three counterarguments and one observation. I will rebut the 
counterarguments and try to clarify the observation. 
 
The analysis in Francis (2012c) was a modification of an approach proposed by Ioannidis 
and Trikalinos (2007). The basic argument was that the power values for the experiments in 
Piff et al. (2012a) were usually (with one exception) close to 0.5, so the probability that all 
seven experiments would reject the null hypothesis was so small that one doubted that the 
experiments were run properly and reported fully. Piff et al. (2012b) made three 
counterarguments to suggest that the analysis in Francis (2012c) was invalid. In fact, an 
investigation of the counterarguments only leads to further confirmation of the analysis in 
Francis (2012c). 
 
Counterargument (1). The power analysis used in Francis (2012c) requires a large 
sample of studies 
 
As Piff et al. (2012b) noted, Ioannidis and Trikalinos (2007) developed their power 
analysis for application to relatively large sets of experimental findings. If an experiment 
set has both rejections and non-rejections of the null hypothesis, then the analysis does 
require a fairly large number of experiments to be able to draw firm conclusions. However, 
the findings in Piff et al. (2012a) are an extreme pattern of findings: every experiment 
rejected the null hypothesis. Under such an extreme pattern, a small number of experiments 
will suffice to make a convincing argument for publication bias.  
 
Consider a more familiar situation. I tell you that I have a fair coin that will show heads or 
tails equally often. I flip the coin many times and tell you that it showed heads seven times. 
If the coin is fair, the probability of seven heads (out of an implied seven flips) is 
(0.5)7=0.0078125. Following the logic of hypothesis testing, it is reasonable for you to 
conclude that the coin is not actually fair. The analysis in Francis (2012c) is analogous, 
with a flip showing heads being replaced by a report of rejecting a null hypothesis and with 
the concept of a fair coin being replaced by unbiased experimental findings. The numbers 
are a bit different because the power values in Piff et al. (2012a) were a bit larger than 0.5 
(and for one experiment much larger), but the logic is the same.  
 



2 

The number of experiments does matter for this kind of analysis, but in the opposite 
direction implied by Piff et al. (2012b). If you are trying to decide whether a coin is biased, 
then it will be difficult to use hypothesis testing to make a correct conclusion after only two 
coin flips because the probability of two heads from a fair coin is 0.25, which is not so rare. 
Likewise, it is difficult to find evidence of publication bias from a small number of 
experiments. Given the power values for the experiments in Piff et al. (2012a), seven 
experiments is more than enough.  
 
Counterargument (2). The power analysis in Francis (2012c) inappropriately assumed 
homogeneity in effect sizes 
 
When valid, a pooling of effect sizes across experiments gives the best estimate of the 
common effect size (Francis, 2012a,b). However, Piff et al. (2012b) are correct that such 
pooling might be inappropriate for their findings given their widely different measurement 
techniques. Indeed, this is why the analysis in Francis (2012c) did not pool the standardized 
effect sizes. The power values in Table 1 of Francis (2012c) are not based on a pooled 
effect size. Each power value is calculated from the effect size for an experiment, and this 
calculation is sometimes called observed or post-hoc power. Counterargument 2 of Piff et 
al. (2012b) simply does not apply to the analysis in Francis (2012c). 
 
Counterargument (3). The power analysis in Francis (2012c) inappropriately used 
observed power 
 
Piff et al. (2012b) correctly noted that effect sizes computed from experimental data are 
estimates and that confidence intervals can characterize the variability of these estimates. 
They noted that if one takes the upper limit of the pooled effect size’s confidence interval, 
then the product of the power probabilities could be as high as 0.881. (Given 
counterargument 2, it is odd that they used a pooled effect size, but one gets a similar 
number by taking the upper limit of the confidence interval for each experiment’s effect 
size.) However, this calculation is not a proper way of building a confidence interval for 
any statistic (Kelley, 2007), including the probability of rejections for an experiment set.  
 
A proper investigation of the uncertainty about the probability of experiment set rejections 
(ESR) can be found with simulated experiment sets. For each experiment, the simulation 
sampled an effect size value from the distribution of effect sizes suggested by the 
experimental data in Piff et al. (2012a). Using the samples sizes from Piff et al. (2012a) and 
the sampled effect sizes from all seven experiments, the power analysis in Francis (2012c) 
was applied to estimate the probability that all seven experiments would reject the null 
hypothesis (the product of the power values). Out of 100,000 such simulated experiment 
sets, the 2.5% quantile of the ESR probability was 0.0000584 while the 97.5% quantile was 
0.107. The distribution was quite skewed, with a median value of 0.004 and a 99% quantile 
of 0.161. The 0.881 value noted by Piff et al. (2012b) can happen, but it is exceedingly 
rare. Moreover, just as statisticians running hypothesis tests do not generally compute 
confidence intervals of p values (they are bigger than you might think!, see Cumming, 
2012), so too one does not draw inferences from a confidence interval of the ESR 
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probability. The analysis in Francis (2012c) properly drew an inference based on the 
probability of the observed data. What the simulation analysis does tell us is that the 
calculation of the ESR probability is quite robust to variations in the estimated effect size. 
That is, the bias in Piff et al. (2012a) is so convincing that any reasonable miss-estimation 
of effect size matters very little.  
 
There is a somewhat related issue regarding the properties of observed power. A common 
way of measuring statistical power is to use the experimentally estimated effect size as the 
basis for a power calculation. This was the approach used by Francis (2012c), but there are 
other possibilities. For example, Gillett (1994) suggested computing expected power, which 
requires a distribution of plausible effect sizes and weights the resulting power for each 
effect size by the probability of that effect size. Integration of the weighted powers gives 
the expected power. This approach is not commonly used (because one is never sure how to 
define the effect size distribution), and it tends to produce smaller (though possibly more 
accurate) estimates of power than the standard approach. Using this calculation in the 
power anlaysis of Francis (2012c) would only further reduce the ESR probability for the 
findings in Piff et al. (2012a). 
 
Piff et al. (2012b) are correct in noting that observed power has sometimes been 
misapplied, because people have tried to use it as evidence of no effect for experiments that 
did not reject the null hypothesis. There are philosophical problems with this kind of 
approach that largely reflect limitations of hypothesis testing. However, the analysis in 
Francis (2012c) explored experiments where this criticism cannot be levied because every 
experiment in Piff et al. (2012a) rejected the null hypothesis.  
 
There is a more general concern about observed power, which is that it may be a poor 
estimate of true power. Indeed, observed power can be systematically biased (Yuan & 
Maxwell, 2005) such that true power is underestimated when true power is bigger than 0.5 
and overestimated when true power is smaller than 0.5. When true power equals 0.5, 
observed power follows a uniform distribution between zero and one. The problem is that 
the symmetry of the estimated effect size distribution around the true value leads to an 
asymmetry in power estimates because a shift in one direction causes a larger change in 
power than an equivalent shift in the other direction (due to the differing areas in the tails of 
the sampling distribution).  
 
To insure that power underestimation was not responsible for the conclusion of publication 
bias, additional simulated experiments were run to explore the false alarm rate of the power 
analysis. The experiment set emulated the six one-sample experiments in Piff et al. (2012a), 
which by themselves were enough to draw a conclusion of publication bias (one other 
experiment had a larger effect size, but its power is less than one so the set of seven is 
always less probable than the set of six). Each experiment set consisted of eleven 
experiments (one-sample t-tests) with an effect size chosen from a normal distribution with 
a mean 0.177 and standard deviation 0.0418 that mimicked the effect sizes reported by Piff 
et al. (2012a). Sample sizes were chosen to produce a true power of 0.53, which is slightly 
bigger than the power values in Piff et al. (2012a). To avoid unreasonably large sample 
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sizes, any effect size less than 0.05 was reset to the value 0.05. Sample data were drawn 
from a normal distribution with a mean of the experiment’s effect size and a standard 
deviation of one. With these choices, the set of eleven experiments averaged 5.85 rejections 
of the null hypothesis.  
 
The power analysis used by Francis (2012c) was then applied to the experiment set under 
the case where all eleven experiments were fully reported (no bias). That is, the effect size 
of each experiment was computed and used to produce the observed power. Since typically 
not all eleven experiments rejected the null hypothesis, a Fisher’s exact test was used to 
compute the probability that the experiments would produce the observed (or more) 
rejections of the null hypothesis given the post hoc power values. Publication bias was 
concluded if this probability was less than 0.1 (Ioannidis & Trikalinos, 2007; Francis, 
2012a,b).  
 
Out of 100,000 such unbiased simulated experiment sets, only 1,211 concluded evidence 
for publication bias. The false alarm rate is 0.01211, so fears that underestimation of power 
might lead to false reports of publication bias are unfounded, at least for experiments with 
properties similar to those reported in Piff et al. (2012a).  
 
Moreover, the test is extremely conservative even when bias does exist. From the same 
simulations, experiment sets were created with a file drawer bias that did not report the 
experiments that failed to reject the null hypothesis. Applying the same kind of power 
analysis to these biased sets concluded evidence of bias in 21,450 experiment sets. The low 
hit rate (0.2145) is because biased experiment sets often report uncommonly large effect 
sizes, which then lead to overestimates of the true power values. The bottom line is that the 
power analysis only catches the most egregious cases of publication bias.  
 
Observation. Piff et al. (2012b) do not know the source of bias in their experiments 
 
Piff et al. (2012b) explained that selective reporting was not an issue because they ran 
seven experiments and published them all. They also reported that a scrutiny of their 
experimental methods did not reveal any indication of bias. I do not doubt the honesty of 
Piff et al. or their intention to run valid scientific experiments. I suspect that bias crept into 
their experiments without their intention or realization. There are two broad ways for bias 
to contaminate a set of experiments.  
 
The first way is by more frequently publishing findings that reject the null hypothesis than 
publishing findings that do not reject the null hypothesis. This is usually described as a file 
drawer bias, where findings that do not reject the null hypothesis are deliberately 
suppressed. Piff et al. (2012b) are clear that they did not intentionally suppress such 
studies, but it can happen unintentionally. For example, researchers sometimes run low 
powered pilot experiments to explore various methodological details. In some situations 
these variations make no difference for the experimental effect, and researchers are 
effectively running multiple experiments. In such a case researchers may not feel it is 
appropriate to report the pilot experiments, so the reported low powered experiments end 
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up rejecting the null hypothesis more frequently than is appropriate. Likewise, if an 
experiment has multiple measures of behavior and researchers only report the measures that 
reject the null hypothesis (or describe non-rejecting measures as being unrelated to the 
effect of interest), then there is effectively a suppression of experimental findings. There 
are several variations of these basic ideas that all lead to something like a file-drawer bias.   
 
The second way to produce an experiment set with bias is to run the experiments 
incorrectly. Valid hypothesis testing techniques require that researchers take a sample of a 
fixed size from a population. Any deviation from a fixed sample size can lead to too 
frequent rejections of the null hypothesis. For example, suppose a researcher gathers data 
from a random sample of n=20 subjects and runs a t-test. Suppose the p value comes out to 
0.07, which is not below the 0.05 criterion that is commonly used in psychology. 
Undaunted, the researcher gathers data from a randomly selected additional 5 subjects so 
that he now has a total of n=25. With the new data set he computes p=0.04, so he rejects the 
null hypothesis and reports his result. But there is something like multiple testing going on 
here, and the second hypothesis test is invalid. The sample is not a fixed n=25 because the 
researcher would have stopped at n=20 if the first test had rejected the null hypothesis. This 
methodological approach is called optional stopping (or data peeking). If the null 
hypothesis is true, optional stopping increases the Type I error rate. If the null hypothesis is 
false, optional stopping increases the frequency of rejecting the null hypothesis relative to 
the power of the final experiment. If an experimenter is willing to keep adding subjects, the 
probability of rejecting the null hypothesis with this method is effectively 1.0 even if the 
null hypothesis is true. (See Kruschke, 2010 for a further discussion of optional stopping 
and how Bayesian methods can avoid some of these difficulties.) 
 
Optional stopping (in various forms) appears to be widely practiced by experimental 
psychologists (John et al., 2012). It is insidious because it seems to fit naturally with the 
idea that larger samples are always better in statistics, but that idea is true only for 
hypothesis tests with a fixed sample size. Optional stopping also seems to fit in naturally 
with the idea that an experimenter should continue to gather data until finding a definitive 
result, but this idea is inconsistent with the foundations of hypothesis testing. Simmons et 
al. (2011) discuss some other invalid methodological choices that can increase the 
frequency of rejecting the null hypothesis.  
 
Biases like optional stopping lead to such serious misconceptions about replication that 
some researchers appear to not believe the conclusions of a standard power analysis. 
Consider the experiments reported by Piff et al. (2012a). For the first three experiments one 
might suppose that the researchers had little idea of the effect size and picked samples sizes 
based on intuition or convenience. If this is the case, then it is rather remarkable that they 
happened to pick a sample size for each experiment that was just big enough to reject the 
null hypothesis; but even more remarkable is what happened for the last three experiments. 
Having already run the earlier experiments, Piff et al. should have had a pretty good idea 
that the effect size was no larger than 0.2 (and probably smaller). Even if they were 
optimistic, a power analysis with this effect size would have recommended a sample size of 
n=156 to insure a power of 0.8. Instead, they picked sample sizes of 108, 195 and 90, 
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which would give power values of 0.66, 0.87, and 0.59, respectively. Why would anyone 
deliberately design an experiment to have a power of around 0.6? The variability in sample 
sizes and power values suggests that Piff et al. (2012a) did not perform a power analysis 
when designing their experiments, which begs the question: how did they select their 
sample sizes? We may never know for sure (even the researchers may not know because 
sometimes data collection is passed off to other members of the lab), but optional stopping 
seems like a possibility. It would explain why the selected sample sizes were often just big 
enough to reject the null hypothesis.  
 
Conclusions 
 
To a certain extent, the exact source of the bias does not matter when deciding how to 
interpret the findings in Piff et al. (2012a). The findings appear to be biased and so we 
should not consider the reported experiment set to be a valid scientific investigation of the 
relationship between social class and ethical behavior. Of course, it is possible that there 
really was no bias and the findings in Piff et al. (2012a) just had the extremely bad 
misfortune of appearing to have bias. However, the probability of the reported data pattern 
is very low if the experiments were unbiased. Regardless, the scientific interpretation 
remains clear: the appearance of publication bias is enough to cause us to interpret the 
findings in Piff et al. (2012a) as invalid. Any other interpretation is a refutation of the 
principles of hypothesis testing (in which case one doubts the findings of Piff et al. based 
on skepticism of their own hypothesis tests).  
 
From a scientific point of view, the conclusion of publication bias is a cautious, but mild, 
criticism about the effect itself. The claim is not that the null hypothesis is true (the effect 
does not exist), but only that the reported experiments are not valid. The hypothesized 
relation between social class and ethical behavior may, or may not, be true. Only new 
experiments that are free of bias can determine the validity of the claim. Given the 
appearance of publication bias, the findings in Piff et al. (2012a) should not be part of the 
evaluation of the effect.  
 
The evidence of publication bias in Piff et al. (2012a) is convincing, and the 
counterarguments raised by Piff et al. (2012b) do not alter this conclusion. I have no doubt 
that the bias was unintentional, and I suspect that whatever methods introduced the bias are 
not restricted to Piff et al. but are commonly used by other researchers. The field of 
psychology needs to fundamentally alter how it gathers and draws conclusions from 
experimental data.  
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