Adaptive pyramid model for the Traveling Salesman Problem

Zygmunt Pizlo, Emil Stefanov & John Saalweachter Purdue University

> Yll Haxhimusa & Walter G. Kropatsch Vienna University of Technology

Acknowledgment:

Zheng Li

Support:

AFOSR

Traveling Salesman Problem:

 \square

Traveling Salesman Problem:

Experiment

- 5 subjects
- Problem size: 6, 10, 20, 50
- 25 random problems per size
- Problems were shown on a computer screen

6 city

10 city

20 city

optimal 4.8% 50 OSK city BSL 7% 10.6% ZL ZP

Time per city

Optimal solutions

Subject error

Error & Time

Model

- Multiresolution pyramid representation
- Top-down process of tour approximations

The number of nodes on layer i+1 is b times smaller than that on layer i. Receptive field on layer i+1 is b times larger than that on layer i.

What is local close to the top, is global close to the bottom.

2D Pyramid Representation

Model

- Multiresolution pyramid representation
- Top-down process of tour approximations
- Pyramid with the "fovea" and with "eye movements"

Neuroanatomy of the visual system (Hubel & Wiesel, 1974)

At each retinal location, there is a family of receptive fields with different sizes and resolutions.

The size of the smallest field is a function of eccentricity.

Resolution of the finest representation decreases with the distance from the fixation point – this corresponds to the non-uniform density of the receptors on the retina.

Prevents from handling too much information at a time.

Model

- Multiresolution pyramid representation
- Top-down process of tour approximations
- Pyramid with the "fovea" and with "eye movements"
- Local search by means of "cheapest insertion"

Model

- Multiresolution pyramid representation
- Top-down process of tour approximations
- Pyramid with the "fovea" and with "eye movements"
- Local search by means of "cheapest insertion"
- Adaptive receptive fields

Blurring with Gaussian Filter

Min-Max Method for Determining Cluster Boundaries

Bisection Pyramid – Top Layer (8)

Layer 7

Layer 4

Layer 2

Layer 1

Testing the Pyramid Model

- The model was run on the same problems that were used with the subjects
- The size k of the neighborhood for cheapest insertion was a free parameter
- Computational complexity of the model: between O(N) and $O(N^2)$.

Local Search in Cheapest Insertion

Model Fits

Model Fits

Large Problems

Large Problems

Large Problems

Bisection Pyramid Average Time vs Concorde Time (TestBank2)

ZP solving large problems...

Minimum Spanning Tree vs. TSP

MST

Psychophysics: MST vs. TSP

Error

Psychophysics: MST vs. TSP

Optimal solutions

Psychophysics: MST vs. TSP

Time per city

What is MST actually good for?

- Clustering?
- What type of clustering?

MST as line detector

Perfect circle Less-than perfect circle

MST for a realistic example

TSP solutions

Optimal

Line Pyramid

Summary

- Computational complexity of the mental mechanisms is very low but TSP tours found by the subjects are close to optimal.
- Coarse-to-fine sequence of approximations produced by a pyramid algorithm provides a plausible model of the mental mechanisms involved in solving TSP.
- The TSP model simulates attention (visual acuity), as well as eye movements this minimizes the use of memory without slowing down the solution process.
- Simulated receptive fields are adaptive.
- The line detection mechanism is likely to be based on MST.

Next Step

• Test the model using TSP with obstacles.

Euclidean TSP with Obstacles (NE-TSP)

Maze – Like Obstacles

Visual spatial relations in the problem representation (proximities, directions) have to be modified by bottomup verification of availability of moves.

Metric Always Exists, but May be Difficult to Reconstruct

Maze at Hatfield House, Herts