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Abstract. An abstract mathematical theory is presented for a common va-
riety of soritical arguments, treated here in terms of responses of a system,
say, a biological organism, a gadget, or a set of normative linguistic rules,
to stimuli. Any characteristic of the system’s responses which supervenes on
stimuli is called a stimulus effect upon the system. Classificatory sorites is
about the identity of or difference between the effects of stimuli which differ
‘only microscopically’. We formulate the classificatory sorites on arguably the
highest possible level of generality and show that the ‘paradox’ is dissolved
on grounds unrelated to vague predicates or other linguistic issues tradition-
ally associated with it. If stimulus effects are properly defined (i.e., they are
uniquely determined by stimuli), and if the space of the stimuli is endowed
with appropriate (not necessarily metric) closeness and connectedness proper-
ties, then this space must contain points in every vicinity of which, ‘however
small’, the stimulus effect is not constant. The effects can only be ‘tolerant’ to
very small differences between stimuli if the closeness structure which is used
to define very close stimuli does not render the space of stimuli appropriately
connected: in this case the ‘paradox’ cannot be formulated. Nor can it be
formulated if the response properties considered are not true effects, i.e., if
they do not supervene on stimuli.

1. Introduction

We approach sorites as a behavioral issue, with ‘behavior’ broadly understood
as the relationship between stimuli acting upon a system (which can be a biological
organism, a technical device, a set of rules, or anything whatever) and the system’s
responses to these stimuli. Examples of behavioral questions pertaining to sorites
include: Can a person consistently respond by different characterizations, such as
‘is 2 meters long’ and ‘is not 2 meters long’, to visually presented line segments
which only differ by one billionth of one percent? Can a crude two-pan balance
at equilibrium be upset by adding to one of the pans a single atom? Can the
probability that this balance will remain at equilibrium change as a result of adding
to one of the pans a single atom?

It is not essential for this approach whether the responses of the system are
publicly observable. One can very well form behavioral soritical questions using
as responses unobservable or hypothetical entities, such as molecular strains in a
sheet of metal, perceptual images, or intentions. And even with observable re-
sponses, such as utterances of ‘is long’ and ‘is not long’, we may deal not with the
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responses per se (which in this example are not consistently determined by per-
ceived physical length) but with some of their not directly observable properties,
such as the probability with which one of these responses is evoked (which may be
assumed to be consistently determined by physical length).1 The essential feature
of the behavioral approach is that a response or its property is only characterized
by its occurrence or non-occurrence in conjunction with a stimulus and not by its
meaning or truth value, even when these notions are applicable. It makes no dif-
ference whether one speaks of rusty balances tipping left or right in response to
weights placed on their pans, flocks of birds migrating or staying in response to
weather conditions, or ‘competent users of language’ assigning ‘vague predicates’
such as ‘is long’, ‘is definitely beautiful’, or ‘is definitely definitely a fork’ to per-
ceived or described objects. Occurrences and non-occurrences of responses with
certain properties are squarely within the realm of classical logic, and any contra-
diction derived from one’s assumptions about stimuli and responses is a reductio
ad absurdum proof that the conjunction of the assumptions is false. One can argue
about the truth or falsity (or both, or neither) of stating that a line segment being
presented is long, but the statement “in this trial this observer responded to this
line segment by saying ‘it is long’ ” is either true or false in the simplest sense,
subject to no controversy.2 Our goal is to show that statements of the latter kind
form a sufficient basis for dissolving the sorites ‘paradox’, all semantic aspects of
stimulus-response relations being irrelevant. As we argue in Section 2, normative
judgments, such as those formulated in terms of ‘justifiability’ of responses, can
also be recast in behavioral terms and thereby made to fall within the scope of
our analysis. The soritical issues in our analysis have no special ties to the issue
of vague predicates, however interesting in its own right. This is one reason for
‘without vagueness’ in the title of this paper.

The other reason lies in the fact that our analysis is formulated on the level of
rigor of an axiomatic mathematical theory and arguably on the highest possible
level of abstraction. This allows us to avoid superfluous considerations and the
conceptual vagueness which underlay our naive intuitions of soritical issues and play
their role in philosophical disagreements regarding them. In particular, we show
that the notion of closeness of two stimuli which is required to describe soritical
situations need not be quantitative or even topological: it may be defined by means
of the much weaker concept of Maurice Fréchet’s V-spaces.3

1We will argue that consistent determination of the response properties by stimulus values
is of critical importance: soritical arguments do not apply to inconsistent response properties
(those whose values are not determined by the stimuli evoking them) or ‘indeterminate’ response
properties (those whose values cannot be determined or at least assumed to be determinate).

2One might contend that in some cases response properties are in need of being measured or
interpreted, and that precision limits of these measurements or uncertainties of the interpretations
may render the response properties in question ‘vague’, or ‘indeterminate’. This is not a serious
problem for our analysis: the measurements or interpretations themselves simply take the place
of the response properties in our analysis. If the measurements and interpretations are uniquely
determined by the response properties being measured or interpreted, then the analysis presented
in this paper fully applies. If these measurements and interpretations are inconsistent or inde-
terminate themselves, then, as any other inconsistent or indeterminate responses, they are not
amenable to soritical arguments.

3Compare this with TimothyWilliamson’s (1994) position according to which closeness requires
a full-fledged metric for its definition.
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Sorites, viewed behaviorally, entails two different varieties of problems. The
first, which we term classificatory sorites and address in this paper, is about the
(non)identity of responses to stimuli which are ‘almost identical’, or differ ‘only
microscopically’. It is rooted in the original sorites/phalakros puzzles attributed to
Eubulides: adding or removing one grain of sand or one hair at a time does not
change whether the grains do or do not form a heap or the hairs a full head of hair.
The second variety, comparative sorites, sometimes referred to in the literature
as ‘observational sorites’, is about ‘match/not match’-type responses to pairs of
stimuli, and turns out to be very different from classificatory sorites. A treatment
of comparative sorites is presented in a companion paper (Dzhafarov and Dzhafarov,
2010).

This paper is organized as follows. An informal discussion of our treatment of
the classificatory sorites, intended to provide a context and motivation for and to
outline the applicable sphere of formal analysis, is given in Section 2 . The formal
account itself follows in Section 3.

2. Informal Considerations

Consider a set S endowed with a closeness structure, so that for any x ∈ S one
can find in S an x′ 6= x which is ‘as close as one wishes’ to x (such as the set of real
numbers with closeness defined by |x−x′|) or ‘as close as possible’ to x (such as the
set of natural numbers with the same meaning of closeness). Let the elements of
this set S represent stimuli acting upon some system and causing it to react. Thus,
the stimuli may be electric currents passing through a digital ammeter which reacts
by displaying a number on its indicator; or the stimuli may be schematic drawings
of faces visually presented to a human observer who responds by saying that the
face was ‘nice’ or ‘not nice’; or the stimuli may be appropriately measured weather
conditions in May to which a flock of birds reacts by either migrating or not migrate
north. Almost any example would do, provided the closeness relation among stimuli
is well-defined and responses have certain properties, such as the identity of the
responses, the time it has taken to produce them, or their probability, that can
be unambiguously attributed to stimuli. This means that everything else in the
system’s environment is held constant or is known to be irrelevant with regards to
these properties.

2.1. Supervenience, tolerance, and connectedness. Consider now the follow-
ing three characterizations of a hypothetical stimulus-response system.

Supervenience (Sup). Everything else being equal, the system cannot have different
responses to different instances (repeated applications) of one and the same stimu-
lus. That is, there is a function π such that the response of the system to stimulus
x is π(x). We call π the stimulus-effect function, and its values stimulus effects.

Tolerance (Tol). The stimulus-effect function π(x) is ‘tolerant to microscopic changes’
in stimuli: if x′ 6= x is chosen sufficiently close to x, then π(x′) = π(x).

Connectedness (Con). The stimulus set S contains at least one pair of stimuli a, b
with π(a) 6= π(b) such that one can find a finite chain of stimuli

a = x1, . . . , xi, xi+1, . . . , xn = b,

leading from a to b ‘by microscopic steps’: xi+1 is arbitrarily or maximally close to
but different from xi for i = 1, . . . , n− 1.
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The notions of closeness and connectedness by microscopic steps are, of course,
yet to be made precise. But even at the present level of vagueness it is easy to see
that the triple conjunction Sup ∧ Tol ∧ Con is self-contradictory, for it leads to the
classical form of the sorites ‘paradox’ : if Sup and Con hold, then a pair of stimuli
a, b with π(a) 6= π(b) can be connected by a soritical sequence x1, . . . , xn where
a = x1, b = xn, and every xi+1 is only ‘microscopically’ different from xi; but
then, by Tol, π(xi) = π(xi+1) for i = 1, . . . , n − 1, whence π(a) = π(b). We call
the obviously false hypothesis that the conjunction Sup ∧ Tol ∧ Con holds for some
stimulus-response system the classificatory sorites.

It is easy to see that the conjunction Sup∧Tol∧Con is not only sufficient but also
necessary for obtaining the soritical ‘paradox’. Moreover, if Sup is not satisfied, i.e.,
stimulus effects are not determined by stimuli alone, then Tol and Con simply cannot
be formulated as above, as these formulations make use of a stimulus-effect function
π(x). This invalidates the above reductio ad absurdum reasoning altogether.4

Once Sup is accepted, one can construct simple mathematical examples of con-
sistent stimulus-response systems which do not satisfy at least one of Tol and Con.
Thus, Sup∧¬Tol∧Con is satisfied if S is the set of real numbers, closeness is defined
by |x− y|, and π is any nonconstant function of the reals. With the same notion of
closeness, the conjunction Sup∧Tol∧¬Con is satisfied if S is the union of intervals

[0, 1], [2, 3], . . . , [2n, 2n+ 1], . . .

and π(x) is the greatest even integer not exceeding x (thus, e.g., π(2.6) = π(3) = 2).
Finally, replacing π(x) in the previous example with, say, π(x) = x, we get an
example of a system satisfying Sup ∧ ¬Tol ∧ ¬Con.

The only logical problem in every example of classificatory sorites is thus to find
which of the three assumptions Sup, Tol, and Con is violated.

In most examples found in the philosophical literature the effect of a stimulus
x, say, a line segment, is the assignment to x of a ‘vague predicate’ or its negation,
such as ‘is long’ or ‘is not long’. Whatever other properties we assign to vague
predicates, however, the most salient one is that they are not assigned consistently,
even when stimuli are known with complete physical precision. Charles S. Peirce,
in his often cited dictionary article (1902), makes this inconsistency the defining
property of vagueness. If any given length was consistently classified as ‘long’ or
‘not long’ by a given person or by all people in a group of ‘competent speakers’,
the predicate ‘is long’ would not be considered vague for, respectively, this person
or this group.5 It follows that the assignment of vague predicates violates Sup, and

4 One might wonder about the possibility of reformulating Con and Tol so that they could
apply to inconsistent responses, those that are not stimulus-effect functions. With Con this can
indeed be done, by requiring that any two points a, b ∈ S be connectable by microscopic steps.
Inconsistent responses, however, would immediately invaliadate Tol. Indeed, if one did not require
that an effect of x be the same for all instances of x, then Tol would not be true even for x′ = x,
let alone for sufficiently close but different stimuli. Essentially the same argument precludes one
from considering another way of relaxing Sup, the possibility that stimulus effects are determined
by stimuli but their precise values cannot be known or even do not exist (however one understands
this): then the equality of the effect of a stimulus x to that of a stimulus x′ cannot be known
either, or cannot even be meaningfully asserted.

5One can also consider as a system a set of normative rules prescribing in some manner the
assignment of ‘long’ or ‘not long’ to every possible physical length: clearly, in this case, the
assignment rules, if formulable at all, will satisfy Sup and therefore will have to violate at least
one of the assumptions Tol and Con.
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the relation between a set of stimuli and a set of vague predicates assignable to
them is not a stimulus-effect function. One cannot therefore legitimately formulate
a soritical ‘paradox’ using such assignments, and so faces one of two choices: either
to seek additional factors which influence the choice between ‘long’ and ‘not long’
(in our example, besides physical length),6 or to redefine the effect π in such a way
that it becomes a function of length.

2.2. Redefining stimulus effects to ensure supervenience. The traditional
approach in the behavioral sciences would be to redefine the stimulus-effect function
π = π(x) as the probability distribution of a random variable attaining values ‘long’
and ‘not long’: i.e., for some probability function p(x),

π(x) =
x is long x is not long
p(x) 1− p(x)

,

or simply
π(x) = p(x) = Pr[‘x is long’].

The function p(x), called a psychometric function in psychophysics,7 is well known
to look more or less like the curve p2(x) shown in the middle panel of Figure 2.1
(see, e.g., Luce 1963, Luce and Galanter 1963). We refer, of course, not to the exact
shape of the curve but to the fact that the probabilities always change gradually and
never like p1(x) in the left panel, as would be expected if the choice between ‘long’
and ‘not long’ was uniquely determined by physical length (under the assumption
that p(x) is nondecreasing).

To say that a probability p of a response to x is an effect of the stimulus x
amounts to treating probabilities as occurring at individual instances of x ‘within’
the system responding to x, rather than characterizing patterns of the system’s
behaviors over a potential infinity of instances of x. This may cause philosophical
concerns, which may even have some validity to them, although they are disregarded
in the established conceptual schemes of probability theory, physics, and behavioral
sciences. Thus, it is routine in the latter to speak of changes in the probability
p(x) from one instance of x to another as a result of learning or fatigue. The
ontology of probabilities, however, is not a critical issue for our analysis. We only
mention probability distributions as one possibility (a traditional one) of discussing
the classificatory sorites in the face of inconsistent responses, such as utterances of
vague adjectives, or, as far as human responses to perceptual stimuli are concerned,
perfectly precise utterances—there seems to be no difference between the overall
shapes of the psychometric functions for such responses as ‘is long’ and ‘is longer
than 2 meters’. If one denies that the probabilities of such inconsistent responses

6Thus, Diana Raffman’s (1994, 1996) and Steward Shapiro’s (2006) contextual approaches
may be interpreted as asserting π = π(x, b), where π attains values ‘long’ and ‘not long’, x is
the physical length being judged, and b an unspecified spontaneous state (in the sense of being
independent of x) of the observer’s brain. A closeness structure should then be imposed on the
set of (x, b)-values, e.g., by considering (x′, b′) close to (x, b) if x′ is close to x in the usual physical
sense and b′ = b (in which case it is easy to show that either Tol has to be violated or b alone
should determine the effect π). The usefulness of this view depends on our ability to identify b in
(x, b) without referring to the value of π(x, b).

7Psychophysics, in the modern (and admittedly quite vague) sense of the word, is an area of
psychology dealing with simple forms of comparative, classificatory, and evaluative judgements
made in response to well-controlled stimuli. The adjective ‘psychophysical’ compared to ‘psycho-
logical’ implies a greater degree of conceptual and operational precision.
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can be viewed as consistent stimulus effects, then one simply loses this possibility
and has either to seek other ‘hidden states’ and/or ‘hidden responses’, or to declare
sorites altogether unformulable (hence automatically dissolved).

Figure 2.1. Examples of stimulus-effect functions for visually
presented line segments x under the instruction to say whether a
line segment is long (or longer than a standard segment, or longer
than 2 m, etc.). Middle panel: a possible probability function
p2(x) for saying ‘long(er)’, with squares representing values that
could be estimated in a psychophysical experiment using eight ran-
domly and repeatedly presented x-values. Left panel: a possible
but unrealistic probability function p1(x), representing a determin-
istic choice between ‘long(er)’ and ‘not long(er)’. Right panel: a
deterministic stimulus-effect function obtained from the stimulus-
effect function p2(x) by mapping its value to 1 if p2(x) > 1

2 and
mapping it to 0 otherwise.

It has been proposed, primarily in the context of comparative sorites but appli-
cable to classificatory sorites too, that the ‘graduality’ of a stimulus effect (say, a
continuous mapping such as in the middle panel of Figure 2.1) can be at least a
significant part of a dissolution of the sorites ‘paradox’.8 We do not adopt this posi-
tion here. It seems indeed to be the case that common intuition more readily allows
for violations of Tol, the tolerance assumption, when the stimulus-effect function
maps continuously into a set of reals than when it can only attain a finite number
of values. Intuitions notwithstanding, however, the structure of the stimulus-effect
function makes no difference for our analysis of sorites, as one can easily see from
the fact that any function π(x) can be transformed into a binary {0, 1}-valued
stimulus-effect function π∗(x) = f(π(x)) by partitioning the codomain of π(x) into
two nonempty disjoint sets and defining f as equal to 0 on one of them and to 1
on another. An example is shown in the right panel of Figure 2.1. Variants of this

8See, e.g., Delia Graff (2001), but especially C.L. Hardin (1988) who specifically argues for
a probabilistic understanding of human perceptual judgments (using one of the psychophysical
signal detection models).
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argument have been repeatedly used in the literature against what are known as
the ‘degree’ approaches to sorites.9

2.3. Redefining stimuli to ensure supervenience. In an attempt to prop-
erly construct a stimulus-effect function π one may also look into various ways
of (re)defining the stimuli, though in a less dramatic fashion than the one men-
tioned in footnote 6. Thus, one might think it important to take into account
sequential effects, the dependence of a stimulus effect on a sequence of previously
presented stimuli, or even on both the previous stimuli and the responses given to
them. For instance, given a stimulus set I, one can assume that the stimulus-effect
function is determined by compound stimuli

x∗ = (x−k, . . . , x−1, x0), k ≥ 1,

where x0 ∈ I is the stimulus currently presented, and x−i−1 ∈ I is the stimulus
presented prior to stimulus x−i ∈ I (i = 0, . . . , k − 1). These compound stimuli
will now form the ‘true’, ‘properly defined’ stimulus set S. (The definition should
be modified in the obvious way if x0 is preceded by less than k stimuli in I since
the beginning of the count.) If the initial stimulus set I is endowed with some
closeness structure, call it closeness ‘in the initial sense’, then two compound stimuli
x∗ = (x−k, . . . , x−1, x0) and y∗ = (y−k, . . . , y−1, y0) can be naturally defined as
being close if y0 is close to x0 in the initial sense, and y∗ extends x∗ in the sense
that y−i = x−i+1 for i = 1, . . . , k. This definition, and many similar variants, would
ensure that for any sequence of stimuli in I each of which is close to its predecessor,
the same is true for the corresponding sequence of compound stimuli in S: e.g.,
putting k = 3 for concreteness, if in the sequence

x0, x1, x2, . . .

each xi+1 differs from xi ‘microscopically’, then the same is true for the sequence
x∗0, x

∗
1, x
∗
2, . . . , where x∗0 = (x0), x∗1 = (x0, x1), and for each i ≥ 2,

x∗i = (xi−2, xi−1, xi).

If now a stimulus-effect function π, such as the probability of saying ‘long’, is
uniquely determined by such a triad of successive stimuli, the characterizations
Sup, Tol, and Con above will apply with no modifications, and so will the formal
analysis presented in Section 3.

If the stimulus-effect function π is assumed to be determined not only by previ-
ously presented stimuli in I but also by the (possibly inconsistent) responses they
evoked, the stimuli comprising the ‘properly defined’ set S can be defined as

x∗∗ =
x−k x−k+1 . . . x−1 x0

r−k r−k+1 . . . r−1
,

where r−i for i = 1, . . . , k is the response co-occurring in the same trial with x−i ∈
I. Note that the values of the stimulus-effect function π(x∗∗) and the generally
inconsistent responses r in this example may but need not belong to the same set.

9See, e.g., James Cargile (1969). The argument can also be used to manipulate one’s intuitions
to reject the relevance of the ‘graduality’ of stimulus effects to classificatory sorites, although it
is usually equally effective to simply ask questions like “Do you really think that the probability
with which you can say ‘heavy’ may change if one adds a single atom to the weight being judged?”
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A typical example of r−i would be the words ‘long’ or ‘not long’. The stimulus-
effect function π(x∗∗) may be one of these words too, but it could also be, e.g., the
probability distribution

π(x∗∗) =
x0 in x∗∗ is long x0 in x∗∗ is not long

p(x∗∗) 1− p(x∗∗) .

With an ‘initial’ closeness structure imposed on I, the compound stimulus x∗∗ will
be considered close to

y∗∗ =
y−k y−k+1 . . . y−1 y0

r′−k r′−k+1 . . . r′−1

if y0 is close to x0 ‘in the initial sense’, and (y−i, r′−i) = (x−i+1, r−i+1) for each i =
1, . . . , k. Again, our analysis will include thus defined stimulus-response relations
as a special case, with no modifications or additional considerations required. This
would apply to other models of sequential effects, e.g., the dependence of π on all
stimuli preceding the given one, or on a randomly determined number of preceding
stimuli. One can also entertain, with no modifications to the general analysis, other
closeness structures induced among compound stimuli in S by the ‘initial’ closeness
among elements of I.

We must also mention what is perhaps the most radical way to satisfy the super-
venience requirement Sup: by including stimulus instances in the stimulus identities.
This means that each stimulus is formally characterized by a pair (x, t) where x
belongs to an initial set I of physical values, and t designates an ‘instance’, defined
by a time interval or trial number.10 Let it be the latter. A response to (x, t),
whatever this response may be, is a stimulus effect due to the fact that the stimu-
lus (x, t) can never be replicated. Assuming again some ‘initial’ notion of closeness
among elements of I, a natural way to define closeness between (x, t) and (y, t′) is
to require that y be close to x in the initial sense and that t′ be the trial following
t, i.e., t′ = t + 1.11 The requirements Tol and Con for the newly defined stimulus
set S are formulated as follows:

Special case of Tol. If (x′, t + 1) is chosen sufficiently close to (x, t), then the
responses in the trials t and t+ 1 are identical.

Special case of Con. S contains at least one pair of stimuli (a, t), (b, t + n), n > 0,
with different responses in the trials t and t+ n, such that one can find a chain of
stimuli

(a, t) = (x1, t), . . . , (xi, t+ i− 1), (xi+1, t+ i), . . . , (xn+1, t+ n) = (b, t+ n),

where (xi+1, t+ i) is arbitrarily or maximally close to (xi, t+ i− 1) for i = 1, . . . , n.

In spite of the very peculiar definition of stimuli in this example, the incompat-
ibility of Tol and Con in this setting, with Sup being satisfied ‘automatically’, is
obvious. Therefore the formal analysis presented in Section 3 includes this radical
approach as a special case calling for no special considerations.

10We by no means suggest that this approach is reasonable, only that it also falls within the
scope of our formal theory.

11This is in fact how sorites is often described (a repeated question about a series of gradually
changing stimuli), sometimes referred to as the ‘forced march sorites’ (see, e.g., Shapiro, 2006).
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2.4. No-tolerance ‘paradox’. Assuming now that the supervenience requirement,
Sup, is satisfied by an appropriate choice of stimuli and response properties, and
assuming in addition that the closeness structure is chosen so that Con is satisfied,
we face a simple conclusion: Sup∧Con =⇒ ¬Tol, where for emphasis we recall that
¬Tol is the statement

Non-tolerance (¬Tol). There is at least one point x0 ∈ S in every vicinity of which,
however small, the stimulus-effect function π(x) is nonconstant.

In fact, in presenting classificatory sorites, Sup and Con are almost always assumed
implicitly, although Sup is sometimes mentioned as an innocuous premise. The
‘paradox’ then consists in pointing out that people often find hard to accept ¬Tol,
and that those who are willing to accept it can be further confused by being asked
to point out the location of such an x0 in the stimulus set S.

We do not view confusions in people’s theorizing about their possible behaviors
as paradoxes. People are known to maintain wrong beliefs about many subjects,
from trajectories of bodies moving by inertia to other people’s motives. Such beliefs,
however, are hardly relevant to an objective analysis of inertia or people’s motives.
With regards to soritical intuitions, we agree with Achille C. Varzi (2003) who
points out that they fall outside the sphere of a logical or philosophical analysis.12

The implication Sup∧Con =⇒ ¬Tol is a theorem, stated rigorously and in complete
generality in Section 3, hence ¬Tol must be true in the behavior of any real system
satisfying Sup and Con; and if one holds that such systems do not exist, then one
should also accept that the sorites ‘paradox’ cannot even be formulated.13 In this
respect, the ‘epistemic’ dissolution of the classificatory sorites proposed by Roy
A. Sorensen (1988a-b) and Timothy Williamson (1994, 2000) is correct: a point
or points x0 with the property stipulated in ¬Tol must exist objectively for any
system satisfying Sup and Con. In fact, it may very well be that every single point
in S has this property, as it is the case in the middle panel of Figure 2.1 and in a
host of other situations with continuously varying stimulus effect.

Contrary to the epistemic approach, however, such points x0 can be found and
identified to any degree of precision, provided the system in question maintains its
identity for the duration it is studied. Thus, the psychometric function p2(x) in
Figure 2.1 and the points where it reaches a particular level, such as 1

2 in the right
panel of the figure, are routinely estimated in psychophysical experiments. The
participants in such an experiment, of course, will most likely have no idea where
the median or any other feature of their psychometric functions might be, or even
whether their responses to a given stimulus are deterministic or probabilistic. We
also disagree with the epistemicists when they assert a ‘sharp boundary’ between
stimuli characterized by a vague predicate, such as ‘long’, and those characterized
by the predicate’s negation: such a boundary would have existed only if vague pred-
icates were assigned to stimuli consistently, which they are not by virtue of the very
fact that they are vague. In this regard the ‘degree’ theorists and supervaluation-
ists are more in the right, the former by replacing the dichotomies of the ‘long/not
long’ type by gradual effects which can more plausibly be assumed to supervene on
stimuli (e.g., Edgington 1999), the latter by emphasizing the essential arbitrariness

12Varzi also comes closer than many to the ‘behavioral’ approach by pointing out that soritical
issues are essentially non-semantic and are not confined to linguistic phenomena.

13Such systems, however, can be easily constructed: consider a set of length values, for instance,
with the conventional closeness structure and connectedness property, and put π(x) = x
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with which ‘normative’ truth values can be assigned to vague predicates paired with
stimuli (Fine 1975). Both these approaches, however, as well as the epistemic one,
differ from ours in their treating soritical issues in terms of truth values of linguistic
constructs.

It clearly makes no difference for our approach whether we deal with predicates
like ‘is long’ or like ‘is definitely long’, ‘is definitely definitely long’, etc. In all
cases the predicate is treated as a response, and it seems very likely that no such a
response supervenes on stimuli if the latter are objects of different length visually
presented or described. And if one of these predicates, or, more likely, the prob-
ability of invoking it, did supervene on stimuli (endowed with the usual closeness
structure), the no-tolerance conclusion would follow. There is therefore no special
place or significance for considerations of ‘higher-order vagueness’ in the behavioral
approach.

2.5. Normative considerations. One might accept our analysis as applied to
systems responding to stimuli, but still argue that it leaves out a class of soritical
considerations which pertain to the normative category of ‘justification’ for re-
sponses of a system (then necessarily a sentient one). A human responder may, this
argument goes, change his or her factual responses in every vicinity of a particular
stimulus value in accordance with ¬Tol, but will be unable to justify these responses,
to explain why this particular response to this stimulus ought to be chosen over
other, competing responses. This argument is untenable. Such judgments as “this
response is (non)arbitrary”, or “this choice is (un)justified” can always themselves
be viewed as responses to appropriately defined stimuli. We are dealing then with
one of two situations: either with possible distributions of these special responses
over a set of stimuli, in which case our analysis applies with no modifications, or
with people’s (often erroneous) theorizing about these behaviors, which is a topic
best left to psychologists interested in ‘naive’ conceptual schemata.

Consider, e.g., the problem of setting a minimum height requirement for children
riding a roller coaster. The roller coaster operator who decides to set this minimum
height at x cm can be asked various questions related to ‘justifiability’ of this
choice. Thus, the operator is likely to concede that the choice of x cm will be
unfair for a child whose height is x − ε cm provided ε is sufficiently small. One
might argue that this can be said for any x proposed as the boundary, whence a
soritical ‘paradox’ ensues because the operator definitely knows that a child under,
say, 50 cm of height must not ride the roller coaster. This ‘paradox’, however, is
dissolved by recasting the situation in terms of a system (the roller coaster operator)
acted upon by stimuli (various choices of x) and responding by saying “this value
can/cannot be lowered” or “I am/am not absolutely sure this value can be lowered”.
If the choice of allowable responses and the questioning procedure are such that
the responses are consistent, so that Sup is satisfied and the paradox can even be
formulated, then, given that the closeness and connectedness properties here are
ensured, a value x0 must exist, say ≥ 50 cm, to which the roller coaster operator will
respond “this value cannot be lowered” (or “I am not absolutely sure this value can
be lowered”). One could try to salvage the paradox by defining a choice of x = x0

as ‘justifiable’ if the ‘reasons’ for this choice, whatever they may be, do not apply
to any other value of x. The operator can then be asked, in response to various
values of x, whether this value is justifiable in this sense. On a moment’s reflection,
however, only two outcomes are possible in this situation, both contingent on the
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assumption that the operator responds consistently: either the operator will think
of reasons for picking a particular precise value, which would accord with ¬Tol, or
not. In the latter case, the paradox does not obtain simply because the operator’s
response does not vary: every x is deemed ‘unjustifiable’ in the sense that it could
very well be either slightly lowered or slightly incremented (or both), on the entire
set of possible height values.

2.6. No-tolerance does not lead to absolutely precise measurements. We
should briefly address the question which may be raised in connection with ¬Tol:
if this is the case, why can’t one use the responding system in question to measure
some of the stimulus values with absolute precision? The answer seems to be more
subtle than complex. In order to distinguish a stimulus x from its arbitrarily close
neighbors x′ by means of a stimulus-effect function π(x) a human researcher should
possess a system identifying stimuli being presented, ιS(x), and a system identifying
the stimulus effects being recorded, ιR(π(x)). The former is needed to ensure that
the researcher knows that x being presented on two different instances is indeed
one and the same x, and that x′ presented on another instance is not the same
as x. Otherwise, if it is not known which of the two stimuli is presented, x or
x′, and π(x) 6= π(x′), the researcher may have to conclude that π(x), assuming
for now it is known precisely, is ill-defined as a stimulus-effect function. It will
then have to be redefined, e.g., as an x-dependent probability distribution over the
values of π(x). But to have such an identification function ιS(x) amounts to having
yet another stimulus-effect function, besides π(x), whose values react to arbitrarily
small differences from precisely the same stimulus x—something not impossible but
definitely not deliberately construable (unless the stimuli have been identified by
some ι′S(x), which assumption would lead to an infinite regress).

Turning now to the identification ιR(π(x)) of responses, it is trivial only if the
values of π(x), at least in the vicinity of the x in question, are discrete, i.e., π(x)
‘jumps’ by at least some minimal fixed amount as x changes to x′, however close to
x. Otherwise, if π(x) represents degrees or probabilities continuously changing, say,
on an interval of reals, the problem of knowing π(x) becomes as formidable as that
of knowing x, and perhaps more so if π(x) is a principally unobservable quantity,
such as probability. This explanation seems close to Williamson’s (1994) ‘margin
of error’ conception.

3. A Formal Treatment of Classificatory Sorites

Our informal discussion shows that to clearly formulate the classificatory sorites
one needs three things:

(1) A set of stimuli S endowed with a closeness structure. The latter should
allow one, for every pair of stimuli x, x′ ∈ S, to characterize ‘how close’ x′ is
to x. Thus, S may be a set of horizontal line segments, and the conventional
distance |x−x′| between two lengths may be used to characterize closeness
of x′ to x. As explained below, however, the ‘closeness’ does not have to
be a numerical measure: it is generally defined in qualitative (in fact, even
more basic than topological) terms.

(2) A ‘connectedness’ structure on S which allows one, for at least some pairs
of elements a, b ∈ S, to form finite chains of stimuli

a = x1, x2, . . . , xn−1, xn = b
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‘connecting a to b’ with successive elements ‘as close as one wishes’, or ‘as
close as possible’. Thus, if the length values in our example of S form
an interval of positive reals, any two line segments can be connected by a
chain of line segments whose lengths are spaced arbitrarily densely, in the
|xi+1 − xi| sense, within this interval.

(3) A stimulus-effect function π : S → R which assigns to each element of S
a unique element of some set R. The elements of R (stimulus effects) may
be observed or computed from observed responses.

3.1. V-spaces of stimuli. The notion of closeness is formalized by means of V-
spaces introduced by Maurice Fréchet (1918), a relatively little known concept
which is arguably the most general possible way of speaking of closeness.

Definition 3.1. Given a nonempty set S, a V-space on S is a pair

{S, {Vx}x∈S}
where Vx, for each x ∈ S, is a collection of subsets of S satisfying

(1) Vx 6= ∅,
(2) if V ∈ Vx then x ∈ V.

For each x ∈ S, any element V of Vx is called a vicinity of x.14 Any set of vicinities
obtained by choosing one element of Vx for every x ∈ S is called a V-cover of S.

Intuitively, V ∈ Vx is a set of stimuli which are close to x ‘in some sense’ (as a
special case, ‘to some degree’). The set

Cx
′

x = {V ∈ Vx : x′ ∈ V }
of the vicinities of x that contain x′ characterizes ‘how close’ x′ is to x (i.e., in
‘what senses’ or to ‘what degrees’ it is close to x). In particular, x is close to itself
in all possible (for x) senses:

Cxx = Vx.
See Figure 3.1 for a schematic illustration.

If S is endowed with a metric d, the set Vx can be chosen as the set of the open
balls

Bx(ε) = {u ∈ S : d(x, u) < ε}
for all ε > 0, and Cx′

x is then uniquely determined by d(x, x′):

Cx
′

x = {Bx(ε) : d(x, x′) < ε}.
In general, however, the closeness of an x′ to x does not have to have a numerical
sense. Thus, if S is a topological space, the set Vx of the vicinities of x may be
chosen to coincide with the set of all (open) neighborhoods of x, and Cx′

x then
consists of the neighborhoods of x which contain x′.15

14We translate Fréchet’s ‘voisinage’ as ‘vicinity’, because the term ‘neighborhood’ is firmly
associated with topological spaces (a special case of V-spaces). In fact, Fréchet’s definition does
not even require that x ∈ V for V ∈ Vx. To require this, however, is more intuitive and does
not diminish the generality of the construction (see Sierpinski 1956, p. 5). It may seem very
intuitive to posit also that V ∩ U ∈ Vx for any V, U ∈ Vx. This would create structures stronger
than V-spaces but weaker than topological spaces. We do not, however, need this in the present
context.

15The set of all vicinities {Vx}x∈S becomes a topological basis if we postulate that, whenever
z ∈ U ∩ V (where U ∈ Vx and V ∈ Vy), there is a W ∈ Vz such that W ⊂ U ∩ V . The
corresponding topology on S (i.e., the set of open subsets of S) then is obtained as the set of the
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Figure 3.1. An example of a V-space {S, {Vx}x∈S}. S consists
of all points within the large outlined area. A point x ∈ S is
shown with its set of vicinities Vx = {V (1)

x , V
(2)
x , V

(3)
x }. The point

x′ is close to x in the sense Cx′

x = {V (2)
x , V

(3)
x }, x′′ in the sense

Cx′′

x = {V (1)
x , V

(2)
x }, and x′′′ in no sense (is not close at all), as

Cx′′′

x = ∅.

3.2. V-connectedness.

Definition 3.2. A point a ∈ S is V-connected to a point b ∈ S in a V-space
{S, {Vx}x∈S} if for any V-cover {Vx}x∈S of S one can find a finite chain of points
x1, x2, . . . xn−1, xn ∈ S such that

(1) a = x1,
(2) b = xn,
(3) Vxi

∩ Vxi+1 6= ∅ for i = 1, . . . n− 1.
A V-space {S, {Vx}x∈S} is V-connected if any two points in S are V-connected in
{S, {Vx}x∈S}.16

See Figure 3.2 for a toy example. For a more interesting example, let S be a set
of natural numbers 0, 1, . . ., and let Vn consist of all sets {n, n+ 1, . . . , n+ k} with
0 < k ≤ Kn, where Kn is some nonvanishing function of n (Figure 3.3 provides an
example with Kn ≡ 1). A space of this structure is needed, e.g., for formulating
the classical phalakros and the original sorites paradoxes, where the respective
amounts of hair and grains are natural numbers. Any two numbers m and n

unions of all possible collections of vicinities. Note that unlike in the general case, the topological
notion of closeness is symmetric: Cx′

x = Cx
x′ .

16V-connectedness is not a standard generalization of topological connectedness to V-spaces.
The standard one (Sierpinski 1956, Chapter 1) is to consider a V-space {S, {Vx}x∈S} connected
if S does not have a proper open subset A such that S −A is open too (where we define an open
set as one whose every element has a vicinity contained in the set). Let us call such a space
S-connected. The two notions coincide if the space is topological, but in general V-connectedness
implies S-connectedness without being implied by it. If the space is not S-connected, then for any
decomposition of it into nonempty open A and S − A, any two V-connected points of S either
both belong to A or both belong to S −A.
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Figure 3.2. A V-space {S, {Vx}x∈S} with the three-point set S =
{a, b, c}. Panels A, B, and C show the sets of vicinities Va, Vb, and
Vc, respectively. Thus, Va consists of V (1)

a = {a, c} and V
(2)
a =

{a, b} (unlike in Figure 3.1 the vicinities contain no points besides
a, b, c); Vb consists of V (1)

b = {b, c} and V (2)
b = {a, b}; Vc consists

of the single singleton vicinity Vc = {c}. The four panels 1, 2, 3, 4
show all possible V-covers of S: e.g., the V-cover shown in panel 1
is obtained by choosing V (1)

a from Va, V (1)
b from Vb, and Vc from

Vc. It is easy to see that a is V-connected to b: for the V-cover
{V (1)

a , V
(1)
b , Vc} in panel 1 (a, c, b) is a sequence connecting a to b;

for the remaining three V-covers such a sequence is (a, b). Panel
4 shows that neither a nor b is connected to c. In reference to
Lemma 3.3, {a, b} and {c} are the two V-components of the space.

in this space are V-connected because for any choice of k0, k1, . . . the vicinities
{m, . . . ,m+km}, {m+1, . . . ,m+1+km+1}, . . . , {n, . . . , n+kn} satisfy the properties
(1)-(3) of Definition 3.2. If, however, kn is allowed to vanish for some n, some pairs
of natural numbers may not be V-connected (e.g., if k0 can be 0, then n = 0 will
not be V-connected to any m > 0).

Another example: if S is the set of rational numbers, no two elements of S are
V-connected if the vicinities are defined in the common, topological, way: Vr for
r ∈ S consists of all intervals ]r− q, r+ q[∩S, where q is a positive rational number;
but the space is V-connected if q in the definition of Vr is not allowed to fall below
some ε > 0.

It is easy to see that the relation of ‘being connected to’ is an equivalence relation,
whence we immediately have the following lemma.

Lemma 3.3. For any V-space {S, {Vx}x∈S}, the set S is a union
⋃
Sγ of pairwise

disjoint nonempty subsets (the V-components of S) such that any two points in
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· · ·

Figure 3.3. A V-space which is sufficient to formulate sorites for
integer-valued stimulus spaces: each integer n has a single vicinity
{n, n+ 1}, and any two points n and m are V-connected.

every V-component are V-connected in {S, {Vx}x∈S} and no two points belonging
to different V-components are V-connected in {S, {Vx}x∈S}.17

3.3. Stimulus-effect function.

Definition 3.4. Given a V-space {S, {Vx}x∈S} and an arbitrary set R, any function
π : S → R is a stimulus-effect function (and R a set of stimulus effects). A stimulus-
effect function π is called tolerant at x ∈ S in {S, {Vx}x∈S} if there is a vicinity
Vx ∈ Vx on which π is constant; π is tolerant if it is tolerant at every point. 18

The variety of ways in which one can define R has been discussed in the previous
section. The following are two obvious properties of stimulus-effect functions:

(1) If π : S → R is a stimulus-effect function, then so is f ◦ π : S → R∗ where
f is any function R→ R∗.

(2) If {πυ : S → Rυ}υ∈Υ is a collection of stimulus-effect functions (with Υ an
arbitrary indexing set), then π : S →

∏
υ∈ΥRυ is a stimulus-effect function

too, where
∏

stands for the Cartesian product and π(x) = {πυ(x)}υ∈Υ.
The first property allows one to ‘coarsen’ a given stimulus-effect function in any
desirable way, e.g., to create a binary function from a multivalued one (as in Figure
2.1). The second property allows one to combine different stimulus-effect functions
(e.g., elicited under different instructions in a psychophysical experiment) into a
single one. The conjunction of the two properties allows one to say that given
a stimulus-effect function π, the system can always be viewed as possessing the
stimulus-effect function π∗(x) = {fυ ◦ π(x)}υ∈Υ for any set of functions {fυ}υ∈Υ

defined on R.

3.4. No-tolerance theorem. This is the main theorem of this section (together
with Theorem 3.10 below which represents an alternative approach).

Theorem 3.5. Let {S, {Vx}x∈S} be a V-space and π : S → R a stimulus-effect
function, such that S contains two V-connected elements a, b for which π(a) 6= π(b).
Then π is not tolerant: there is at least one x ∈ S such that π is nonconstant on
any vicinity of x (‘however small’).

Proof. Assume π is tolerant: every x has a vicinity V ∗x such that π is constant on
V ∗x . The set {V ∗x }x∈S is a V-cover of S, and a, b being V-connected, one can form
a sequence V ∗x1

, . . . , V ∗xn
satisfying (i)-(iii) of Definition 3.2. Then, denoting by yi

17In accordance with footnote 16, if S can be decomposed into nonempty open A and S − A,
then every V-component is entirely contained in A or entirely contained in S −A.

18The term ‘tolerant’ is chosen because it is used in the philosophical literature related to
sorites. Following the term-formation scheme adopted in this paper it would have been more
logical to label tolerant functions ‘V-locally constant’ (‘locally constant function’ is a standard
mathematical term for the analogous property in topological spaces).
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an arbitrary element of V ∗xi
∩V ∗xi+1

, we would have π(yi) = π(yi+1) (since yi, yi+1 ∈
V ∗xi+1, i = 1, . . . n − 1), whence π(a) = π(x1) = π(xn) = π(b), contradicting the
premise π(a) 6= π(b). �

One can easily see in the proof of this theorem the spelled-out version of the
classical (classificatory) sorites, taken as a reductio ad absurdum proof of the in-
compatibility of Sup, Tol, and Con, informally stated in the previous section.

Corollary 3.6. No nonconstant function on a V-connected V-space is tolerant.

3.5. An alternative view: No-connectedness theorem. The formalization
just presented is based on the notion of closeness defined in terms of stimuli alone.
This allows us to formulate the internal inconsistency of Sup ∧ Tol ∧ Con as Sup ∧
Con =⇒ ¬Tol, the ‘no-tolerance’ Theorem 3.5. There is, however, another way of
approaching this inconsistency: to define vicinities as constant-response areas of
the stimulus set S; we call these ‘pi-vicinities’ since we denote the stimulus-effect
function by π. This makes the stimulus-effect function ‘automatically’ tolerant, and
one sees subsequently that no two points in S are V-connected unless they map into
one and the same stimulus effect: Sup ∧ Tol =⇒ ¬Con

Definition 3.7. Given a nonempty set S, an arbitrary set R, and a stimulus-effect
function π : S → R, the pi-vicinity of x ∈ S is the set Px of all x′ ∈ S such that
π(x′) = π(x). The pair {S, {Px}x∈S} is called the pi-space associated to π.

Lemma 3.8. Any pi-space {S, {Px}x∈S} uniquely corresponds to the V-space on S
in which the only vicinity of x ∈ S is Px. The collection of the sets {Px}x∈S is the
only V-cover of S in this V-space.

Proof. It is clear that {S, {Vx}x∈S} with Vx = {Px} satisfies Definition 3.1. �

Lemma 3.9. The pi-space {S, {Px}x∈S} associated to π : S → R is uniquely deter-
mined by π, and π is tolerant in the corresponding V-space {S, {Vx = {Px}}x∈S}.

Proof. An immediate consequence of Definition 3.7, Lemma 3.8, and Definition
3.4. �

We now easily obtain the ‘no-connectedness’ theorem:

Theorem 3.10. Given the pi-space {S, {Px}x∈S} associated to a stimulus-effect
function π : S → R, two elements a, b ∈ S are V-connected in the corresponding
V-space {S, {Vx = {Px}}x∈S} if and only if π(a) = π(b).

Proof. An immediate consequence of Definition 3.2 and the fact that either Px = Py
or Px ∩ Py = ∅, for any x, y ∈ S. �

4. Conclusion

We now summarize our main points, omitting (admittedly necessary) caveats
and explanations.

(1) Sorites is not related to the issue of vagueness in human responses to stimuli.
In fact, responses containing ‘vague predicates’ are always inconsistent, i.e.,
do not supervene on stimuli, and therefore do not allow one to formulate a
sorites ‘paradox’.
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(2) The ‘paradox’ itself, when it can be formulated, is based on the false belief
that responses of a ‘macroscopic’ system to two ‘microscopically different’
stimuli must be the same. In fact, whenever a stimulus space and stimulus
effects can be defined in such a way that the effects supervene on stimuli
and stimuli are connectable by ‘microscopic steps’, it is shown on a very
high, pre-topological level of generality that the stimulus space must contain
stimuli in any vicinity of which, however small, the stimulus effects vary.
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