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The object of contextuality analysis is a set of random variables each of which is uniquely labeled
by a content and a context. In the measurement terminology, the content is that which the random
variable measures, whereas the context describes the conditions under which this content is measured
(in particular, the set of other contents being measured “together” with this one). Such a set of
random variables is deemed noncontextual or contextual depending on whether the distributions of
the context-sharing random variables are or are not compatible with certain distributions imposed
on the content-sharing random variables. In the traditional approaches, contextuality is either
restricted to only consistently-connected systems (those in which any two content-sharing random
variables have the same distribution) or else all inconsistently-connected systems (those not having
this property) are considered contextual. In the Contextuality-by-Default theory, an inconsistently
connected system may or may not be contextual. There are several arguments for this understanding
of contextuality, and this note adds one more. It is related to the fact that generally not each content
is measured in each context, so there are “empty” content-context pairs. It is convenient to treat each
of these empty pairs as containing a dummy random variable, one that does not change the degree
of contextuality in a system. These dummy random variables are deterministic ones, attaining a
single value with probability 1. The replacement of absent random variables with deterministic ones,
however, can only be made if one allows for inconsistently-connected systems.
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Replacing “nothing” with “something” chosen for its spe-
cial properties is one of the main ways a mathematical the-
ory develops. One speaks of “nothing” when one chooses no
elements from a set, adds no number to a total, or leaves a
function unchanged; but a more sophisticated way of speak-
ing of these “nothings” would be to take an empty subset
of the set, to add a zero to the total, and to apply an iden-
tity operator to the function. As a rule, these “somethings”
provide not only greater convenience, but also a greater
insight. Mature set theory cannot be constructed without
empty sets, nor can algebra be developed without neutral
elements of operations. One faces an analogous situation
in the theory of contextuality: “nothing” here means that
certain things are not measured in certain contexts, and
the “special somethings” to replace these “nothings” are de-
terministic random variables.

Contextuality analysis applies to systems of random vari-
ables Rc

q representing the outcomes of measuring a content
q (property, object, thing, question, sensory stimulus) in a
context c (circumstances, conditions, setup). An example
is the matrix below, with three contents and four contexts:

R1
1 R1

2 · c = 1

R2
1 R2

2 · c = 2

R3
1 · R3

3 c = 3

· R4
2 R4

3 c = 4

q = 1 q = 2 q = 3 R

.

The rules such a matrix obeys are: (i) all random vari-
ables in the same column have the same set of values (and
sigma-algebras); (ii) all random variables within a row are
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jointly distributed ; (iii) random variables in different rows
are not jointly distributed (are stochastically unrelated to
each other) [5, 8, 11]. The system is considered noncon-
textual if the joint distributions of the random variables
within the rows are compatible with the joint distributions
imposed on the random variable within each column (the
compatibility meaning that both the observed row-wise dis-
tributions and the imposed column-wise ones can be viewed
as marginals of a single probability distribution imposed on
the entire system). Otherwise the system is contextual.

We will use the system R throughout to illustrate our
points, but the three points we make below hold for all sys-
tems of random variables indexed by contents and contexts.

As we see in the matrix, not every content is measured in
every context, there are cells with “nothing” in them. It is
natural to posit, however, that for a random variable being
undefined is logically equivalent to being defined as always
attaining a value labeled “undefined.” If so, we can fill in
the empty cells with deterministic random variables,

R1
1 R1

2 U1
3 ≡ u c = 1

R2
1 R2

2 U2
3 ≡ u c = 2

R3
1 U3

2 ≡ u R3
3 c = 3

U4
1 ≡ u R4

2 R4
3 c = 4

q = 1 q = 2 q = 3 R′

,

where u is interpreted as “undefined,” and U ≡ u means
that random variable U equals u with probability 1. In
order to comply with the rule (i) above, this value u then
should be added to the set of possible values of all other
random variables, as attained by each of them with proba-
bility zero.
The first point of this note is that a well-designed con-

textuality theory should allow the addition of these deter-
ministic Us to any system without changing whether the
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system is contextual or noncontextual. One can even im-
plement the addition of the deterministic Us empirically,
e.g., by setting the procedure/device measuring q = 3 in
contexts c = 3 and c = 4 to produce a fixed outcome inter-
preted as “undefined” in contexts c = 1 and c = 2.
The second point of this note is that this desideratum

cannot be satisfied if one confines contextuality analysis to
consistently-connected systems only, the systems in which
all measurements of the same content (e.g., R1

1, R2
1, and R3

1

in R) have the same distribution [11]. With the exception
of the Contextuality-By-Default theory, discussed below,
and of Khrennikov’s conditionalization approach [3, 13],
this constraint is common in studies of quantum contex-
tuality [1, 2, 4, 14, 15] (see Refs. [7, 9, 10, 12] for detailed
discussions). Thus, if R1

1, R2
1, and R3

1 in R do not have one
and the same distribution (i.e. the system is inconsistently-
connected), then, from the traditional point of view, either
the notion of contextuality is not applicable to R, or the
system is considered contextual “automatically.” In Refs.
[5, 8, 9, 11] we provide several arguments against the ne-
cessity and desirability of the consistent connectedness con-
straint, and the present note adds one more. Namely, if
one agrees that the transition from R to R′ is a mere
relabeling, one should consider it a flaw that in the tra-
ditional understanding of contextuality this transition has
dramatic consequences: by adding the deterministic U ’s to
a consistently-connected and noncontextual R, one would
“automatically” render it contextual, or else unanalyzable
in contextuality terms.
The third point of this note is that the desideratum in

question is satisfied in the Contextuality-By-Default (CbD)
theory [5, 9–11]: adding the deterministic Us to R does not
change the degree of contextuality computed in accordance
with CbD. Moreover, the fixed value u inR′ can be replaced
with any other fixed values, and different fixed values can
be chosen in different cells:

R1
1 R1

2 Z1
3 ≡ z13 c = 1

R2
1 R2

2 Z2
3 ≡ z23 c = 2

R3
1 Z3

2 ≡ z32 R3
3 c = 3

Z4
1 ≡ z41 R4

2 R4
3 c = 4

q = 1 q = 2 q = 3 R∗

Since the choice is arbitrary, one can always avoid the ne-
cessity of adding, with zero probabilities, the values zcq to
the set of possible values of all Rc′

q , in the same column.
One can instead choose zcq to be one of these possible val-
ues (no matter which). Let, e.g., R3

3 (hence also R4
3) in R

be a binary random variable with values +1/-1; then, Z1
3

can be chosen either as Z1
3 ≡ 1 or Z1

3 ≡ −1.
The rest of the note demonstrates our third point.

(Non)contextuality of the system R in the CbD theory is
understood as follows.

(A) First we introduce a certain statement C that can
be formulated for any pair of jointly distributed random
variables. This statement should be chosen so that, for any
column in R, say,

{
R1

1, R
2
1, R

3
1

}
for q = 1, there is one and

only one set of corresponding and jointly distributed ran-
dom variables,

(
T 1
1 , T

2
1 , T

3
1

)
, such that (1) each of the T s

is distributed as the corresponding R; and (2) any two of
the T s in

(
T 1
1 , T

2
1 , T

3
1

)
satisfy the statement C. This unique

triple
(
T 1
1 , T

2
1 , T

3
1

)
is called the C-coupling of

{
R1

1, R
2
1, R

3
1

}
,

and the C-couplings for other columns of R are defined
analogously. Note that any part of the C-coupling of a set
of random variables is the unique C-coupling of the corre-
sponding subset of these random variables. In CbD, as-
suming all random variables in R are binary, the role of C
is played by the statement “the two random variables are
equal to each other with maximal possible probability.” If
the measurements are not dichotomous, then the system
has to be dichotomized, as detailed in Ref. [6]. We need
not go into these details, however, because we can make
our point on a higher level of abstraction, for any C with
the just stipulated properties.

(B) The system R is considered C-noncontextual if there
is a random variable (vector) S with jointly distributed
components corresponding to the components of R,

S1
1 S1

2 · c = 1

S2
1 S2

2 · c = 2

S3
1 · S3

3 c = 3

· S4
2 S4

3 c = 4

q = 1 q = 2 q = 3 S

,

such that its rows are distributed as the corresponding rows
of R and its columns are distributed as the C-couplings of
the corresponding columns of R. Otherwise, if such an S
does not exist, the system is C-contextual. The intuition
behind this definition is that the system is C-contextual if
the distributions of the random variables within contexts
prevent the random variables measuring one and the same
content in different contexts from being coupled in compli-
ance with C.

(C) If the system R is C-contextual, the degree of its con-
textuality is computed in the following way. The random
variable S above is characterized by the probability masses

p
(
s11, s

1
2, s

2
1, s

2
2, s

3
1, s

3
3, s

4
2, s

4
3

)
assigned to every value

(
S1
1 = s11, S

1
2 = s12, . . . , S

4
3 = s43

)
of

S. We redefine S into a quasi-random variable if we replace
these probability masses with arbitrary real numbers

q
(
s11, s

1
2, s

2
1, s

2
2, s

3
1, s

3
3, s

4
2, s

4
3

)
summing to 1. We require that this quasi-probability dis-
tribution satisfy the same properties as the distribution of
S in (B), namely, that it agrees with the distributions of
the rows of R and with the distributions of the C-couplings
of its columns. Thus, the agreement with the first row dis-
tribution means that, for any R1

1 = r11, R
1
2 = r12, we should

have ∑
s21,s

2
2,s

3
1,s

3
3,s

4
2,s

4
3
q
(
r11, r

1
2, s

2
1, s

2
2, s

3
1, s

3
3, s

4
2, s

4
3

)
= Pr

[
R1

1 = r11, R
1
2 = r12

]
.

(1)
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The agreement with the distribution of the C-coupling(
T 1
1 , T

2
1 , T

3
1

)
for the first column means that, for any R1

1 =

r11, R
2
1 = r21, R

3
1 = r31, we should have

∑
s12,s

2
2,s

3
3,s

4
2,s

4
3
q
(
r11, s

1
2, r

2
1, s

2
2, r

3
1, s

3
3, s

4
2, s

4
3

)
= Pr

[
T 1
1 = r11, T

2
1 = r21, T

3
1 = r31

]
.

(2)

Such quasi-random variables S always exist, and among
them one can always find (generally non-uniquely) ones
whose total variation is minimal [8]. The total variation
is defined as

V [S] =
∑

s11,s
1
2,s

2
1,s

2
2,s

3
1,s

3
3,s

4
2,s

4
3

∣∣q (s11, s12, s21, s22, s31, s33, s42, s43)∣∣ .
(3)

The quantity minV [S] − 1 can be taken as a principled
and universal measure of the degree of contextuality. If
this quantity equals 0, which is the smallest possible
value for V [S]− 1, then all quasi-probability masses q are
nonnegative, and S∗ is a proper random variable. The
system then is C-noncontextual.

It is easy now to see the truth of our claim, that R∗ has
the same degree of contextuality as R. On the right-hand
side of (1),

Pr
[
R1

1 = r11, R
1
2 = r12

]
= Pr

[
R1

1 = r11, R
1
2 = r12, Z

1
3 = z13

]
,

because Z1
3 ≡ z13 . The same reasoning applies to other rows

of R∗. On the the right-hand side of (2), for any Ż4
1 ≡ z41 ,

Pr
[
T 1
1 = r11, T

2
1 = r21, T

3
1 = r31

]
= Pr

[
T 1
1 = r11, T

2
1 = r21, T

3
1 = r31, Ż

4
1 = z41

]
.

Now,
(
T 1
1 , T

2
1 , T

3
1 , Ż

4
1

)
is the C-coupling of{

R1
1, R

2
1, R

3
1, Z

4
1

}
. Indeed, the C-coupling

(
Ṫ 1
1 , Ṫ

2
1 , Ṫ

3
1 , Ż

4
1

)
of
{
R1

1, R
2
1, R

3
1, Z

4
1

}
exists and is unique. The part(

Ṫ 1
1 , Ṫ

2
1 , Ṫ

3
1

)
is then the unique C-coupling of

{
R1

1, R
2
1, R

3
1

}
,

whence
(
Ṫ 1
1 , Ṫ

2
1 , Ṫ

3
1

)
=
(
T 1
1 , T

2
1 , T

3
1

)
. The same reasoning

applies to other columns of R∗. So the right-hand sides
in the equations exemplified by (1) and (2) do not change
when R is replaced with R∗. Since, under this replace-
ment, the left-hand sides of these equations do not change
either, except that each quasi-probability value

q
(
s11, s

1
2, s

2
1, s

2
2, s

3
1, s

3
3, s

4
2, s

4
3

)
in them is bijectively renamed into

q
(
s11, s

1
2, z

1
3 , s

2
1, s

2
2, z

2
3 , s

3
1, z

3
2 , s

3
3, z

4
1 , s

4
2, s

4
3

)
,

the set of the quasi-probability distributions solving (1)
and (2) (and similar equations) in R∗ remains the same
as in R, and the minimum value of V [S] in (3) therefore
remains unchanged.
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