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a b s t r a c t

Given a set of several inputs into a system (e.g., independent variables characterizing stimuli) and a set
of several stochastically non-independent outputs (e.g., random variables describing different aspects
of responses), how can one determine, for each of the outputs, which of the inputs it is influenced by?
The problem has applications ranging from modeling pairwise comparisons to reconstructing mental
processing architectures to conjoint testing. A necessary and sufficient condition for a given pattern of
selective influences is provided by the Joint Distribution Criterion, according to which the problem of
‘‘what influences what’’ is equivalent to that of the existence of a joint distribution for a certain set of
random variables. For inputs and outputs with finite sets of values this criterion translates into a test of
consistency of a certain system of linear equations and inequalities (Linear Feasibility Test) which can
be performed by means of linear programming. While new in the behavioral context, both this test and
the Joint Distribution Criterion on which it is based have been previously proposed in quantum physics,
in dealing with generalizations of Bell inequalities for the quantum entanglement problem. The parallels
between this problem and that of selective influences in behavioral sciences are established by observing
that noncommuting measurements in quantum physics are mutually exclusive and can therefore be
treated as different levels of one and the same factor.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

This paper deals with diagrams of selective influences, like this
one:

(1)

The Greek letters in this diagram represent inputs, or external
factors, e.g., parameters of stimuli whose values can be chosen
at will or observed and recorded. The capital Roman letters
stand for random outputs characterizing reactions of the system
(an observer, a group of observers, stock market, a set of photons,
etc.). The arrows show which factor influences which random
output. The factors are treated as deterministic entities: even if
α, β, γ , δ in reality vary randomly (e.g., being randomly generated
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by a computer program, or being concomitant parameters of
observations, such as age of respondents), for the purposes of
analyzing selective influences the random outputs A, B, C are
always viewed as conditioned upon various combinations of
specific values of α, β, γ , δ. The first question to ask is: what is
the meaning of the above diagram if the random outputs A, B, C in
it are not necessarily stochastically independent? (If they are, the
answer is of course trivial.) And once the meaning of the diagram
of selective influences is established, how can one determine that
this diagram correctly characterizes the dependence of the joint
distributions of the random outputs A, B, C on the external factors
α, β, γ , δ?

These questions are important, because the assumption of
stochastic independence of the outputs more often than not
is either demonstrably false or adopted for expediency alone,
with no other justification. At the same time the assumption
of selectivity in causal relations between inputs and stochastic
outputs is ubiquitous in theoretical modeling, often being built
in the very language of the models. For instance, in Thurstone’s
most generalmodel of pairwise comparisons (Thurstone, 1927) it is
assumed that each of the two stimuli is mapped into ‘‘its’’ internal
representation, while the two representations are stochastically
interdependent random entities. In Dzhafarov (2003a), Dzhafarov
and Gluhovsky (2006), and Kujala and Dzhafarov (2008) the
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reader may find other motivating applications for the notion of
selective influences: same–different comparisons, conjoint testing,
parallel–serial networks of mental operations, response time
decompositions, and all conceivable combinations of regression
analysis and factor analysis. In this paper we add another
motivating example, the quantum entanglement problem in
quantum physics.

This paper continues and expands the analysis of selective in-
fluences presented in Dzhafarov and Kujala (2010). The familiar-
ity with it can be helpful, but the main concepts, terminology, and
notation are recapitulated in Section 2. Unlike in Dzhafarov and
Kujala (2010), however, here we do not pursue the goal of max-
imal generality of formulations, focusing instead on the concep-
tual set-up that applies to commonly encountered experimental
designs. This means a finite number of factors, each having a finite
number of values. It also means that the random outcomes influ-
enced by these factors are random variables in the narrow sense
of the word: their values are vectors of real numbers or elements
of countable sets, rather than more complex structures, such as
functions or sets. This is done primarily to simplify and shorten
exposition, and also because the Linear Feasibility Test, a new (for
behavioral sciences) application of the Joint Distribution Criterion
on which we focus in this paper (Section 3), is confined to finite
sets of finite-valued factors and finite-valued random variables.
This also allows us to emphasize a simple but important and previ-
ously overlooked proposition, Theorem 2.3, which essentially says
that, when dealing with observable random variables, the unob-
servable random entities of the theory can also be assumed to be
random variables (in the narrow sense). In another respect, how-
ever, the present treatment is more general than that in Dzhafarov
and Kujala (2010): we allow for incomplete designs, those in which
some but not necessarily all combinations of the values of the fac-
tors serve as allowable treatments. This modification is critical for
the possibility of representing any diagram of selective influences,
such as (1), in a canonical form, with every random output being
selectively influenced by one and only one factor.

As it turns out, both the Linear Feasibility Test and the Joint
Distribution Criterion on which it is based have their analogues
in quantum physics.1 To appreciate the analogy, however, one
has to adopt the interpretation of noncommuting quantum
measurements performed on a given component of a quantum-
entangled system as mutually exclusive factor levels of the same
factor. In Sections 2.6 and 3 we discuss the parallels between
the existence of a classical explanation for an entanglement
situation in quantummechanics and the adherence of a behavioral
experiment to a diagram of selective influences.

The term ‘‘test’’ in this paper is used in themeaning of necessary
(sometimes necessary and sufficient) conditions for diagrams of
selective influences. The usage is the same aswhenwe speak of the
tests for convergence in calculus or for divisibility in arithmetic.
That is, the meaning of the term is non-statistical. We assume
that random outputs are known on the population level. General
considerations related to statistical tests based on our population
level tests are discussed in Section 3.6, but specific statistical issues
are outside the scope of this paper.

2. Basic notions

In this section, we establish the terminology, notation, and
recapitulate basic facts related to factors, randomvariables, and the

1 We are grateful to Jerome Busemeyer of Indiana University who pointed out to
us that the formulation of the Joint Distribution Criterion in our earlier work has
the same formal structure as the identically titled criterion in Fine (1982a,b), in his
analysis of quantum entanglement.
dependence of the latter on the former. We follow Dzhafarov and
Kujala (2010), adding observations related to the factorial designs
being incomplete and random outputs being random variables in
the narrow sense of the term. At the end of the section we discuss
the parallels between the issue of selective influence in behavioral
sciences and the quantum entanglement problem.

2.1. Factors, factor points, treatments

A factor α is treated as a set of factor points, each of which has
the format ‘‘value (or level) x of factor α’’. In symbols, this can
be presented as (x,‘α’), where ‘α’ is the unique name of the set α

rather than the set itself. It is convenient to write xα in place of
(x,‘α’). Thus, if a factor with the name ‘intensity’ has three levels,
‘low,‘medium’, and ‘high’, then this factor is taken to be the set

intensity =

lowintensity,mediumintensity, highintensity .

There is no circularity here, for, say, the factor point lowintensity

stands for (value = low, name = ‘intensity’) rather than (value = low,
set = intensity).

We will deal with finite sets of factors Φ = {α1, . . . , αm}, with
each factor α ∈ Φ consisting of a finite number of factor points,

α =

vα
1 , . . . , vα

kα


.

Clearly, α ∩ β = ∅ for any distinct α, β ∈ Φ .
A treatment, as usual, is defined as the set of factor points

containing one factor point from each factor,

φ =

xα1
1 , . . . , xαm

m


∈ α1 × · · · × αm.

The set of treatments (used in an experiment or considered in
a theory) is denoted by T ⊂ α1 × · · · × αm and assumed to be
nonempty. Note that T need not include all possible combinations
of factor points. This is an important consideration in view of the
‘‘canonical rearrangement’’ described below. Also, incompletely
crossed designs occur broadly—in an experiment because the
entire set α1 × · · · × αm may be too large, or in a theory because
certain combinations of factor pointsmay be physically or logically
impossible (e.g., contrast and shape cannot be completely crossed
if zero is one of the values for contrast).

2.2. Random variables

We assume the reader is familiar with the notion of a random
entity (random variable in the general sense of the term) A
associated with an observation space (A, Σ), where A is the set
of possible values for A, and Σ a sigma-algebra (set of events) on
A. A random variable (in the narrow sense) is a special case of a
random entity, defined as follows:

(i) if A is countable, Σ is the power set of A, then A is a random
variable;

(ii) if A is an interval of reals, Σ is the Lebesgue sigma-algebra
on A, then A is a random variable;

(iii) if A1, . . . , An are random variables, then any jointly
distributed vector (A1, . . . , An) whose observation space is the
conventionally understood product of the observations spaces for
A1, . . . , An is a random variable.

Weuse the relational symbol∼ in themeaning of ‘‘is distributed
as’’.A ∼ B iswell defined irrespective ofwhetherA and B are jointly
distributed.

Let, for each treatment φ ∈ T , there be a vector of jointly dis-
tributed random variables A = (A1, . . . , An) with a fixed (product)
observation space and the probability measure µφ that depends



56 E.N. Dzhafarov, J.V. Kujala / Journal of Mathematical Psychology 56 (2012) 54–63
on φ.2 Then we say that we have a vector of jointly distributed ran-
dom variables that depends on treatment φ, and write

A(φ) = (A1, . . . , An)(φ), φ ∈ T .

A correct way of thinking of A(φ) is that it represents a set of
vectors of jointly distributed random variables, each of these vec-
tors being labeled (indexed) by a particular treatment. Any sub-
vector of A (φ) should also be written with the argument φ, say,
(A1, A2, A3) (φ). If φ is explicated as φ =


xα1
1 , . . . , xαm

m


, we write

A(φ) = A(xα1
1 , . . . , xαm

m ).
It is important to note that for distinct treatments φ1 and φ2 the

corresponding A(φ1) and A(φ2) do not possess a joint distribution,
they are stochastically unrelated. This is easy to understand: since
φ1 and φ2 are mutually exclusive conditions for observing values
of A, there is no non-arbitrary way of choosing which value a =

(a1, . . . , an) observed at φ1 should be paired with which value
a′

= (a′

1, . . . , a
′
n) observed at φ2. To consider A(φ1) and A(φ2)

stochastically independent and to pair every possible value of
A(φ1) with every possible value A(φ2) is as arbitrary as, say, to
consider them positively correlated and to pair every quantile of
A(φ1) with the corresponding quantile of A(φ2).

2.3. Arrow diagrams, canonically (re)arranged

Given a set of factors Φ = {α1, . . . , αm} and a vector A(φ) =

(A1, . . . , An)(φ) of random variables depending on treatment, an
arrow diagram is a mapping

M: {1, . . . , n} → 2Φ (2)

(2Φ being the set of subsets of Φ). Later, in Definition 2.1, the
arrows will be interpreted as indicating selective influences, but
for now this is unimportant. The set

Φi = M (i) , (i = 1, . . . , n),

is referred to as the subset of factors corresponding to Ai. It
determines, for any treatment φ ∈ T , the subtreatments φΦi
defined as

φΦi = {xα
∈ φ : α ∈ Φi} , i = 1, . . . , n.

Subtreatments φΦi across all φ ∈ T can be viewed as admissible
values of the subset of factors Φi (i = 1, . . . , n). Note that φΦi is
empty whenever Φi is empty.

The simplest arrow diagram is bijective, with correspondences

(3)

We can simplify the subsequent discussion without sacrificing
generality by agreeing to reduce each arrow diagram (in the
context of selective influences) to a bijective form, by appropriately
redefining factors and treatments. It is obvious how this should be
done. Given the subsets of factors Φ1, . . . , Φn determined by an
arrowdiagram (2), eachΦi can be viewed as a factor identifiedwith
the set of factor points

α∗

i =


(φΦi)

α∗
i : φ ∈ T


,

in accordancewith the notationwe have adopted for factor points:
(φΦi)

α∗
i = (φΦi , ‘α

∗’). If Φi is empty, then φΦi is empty too, and

2 The convenient assumption of the invariance of the observation space for A
with respect to φ is innocuous: one can always redefine the observation spaces for
different treatments φ to make them coincide.
the factor α∗

i consists of only the dummy factor point ∅αi (where
∅ denotes the empty set). The set of treatments T for the original
factors {α1, . . . , αm} should then be redefined for the vector of new
factors (α∗

1 , . . . , α
∗
n) as

T ∗
=


(φΦ1)

α∗
1 , . . . , (φΦn)

α∗
n

:φ ∈ T


⊂ α∗

1 × · · · × α∗

n .

We call this (re)definition of factor points, factors, and treatments
the canonical (re)arrangement. We can say that the random
variables following canonical (re)arrangement can be indexed by
the corresponding factors. Thus, when convenient, we can write
in (3) A{α1} in place of A1, A{α2} in place of A2, etc. The notation
φΦi = φ{αi} then indicates the singleton set {xαi} ⊂ φ. As usual,
we write xαi in place of {xαi}:

φ{αi} =

xα1
1 , . . . , xαn

n


{αi}

= xαi
i .

2.4. The criterion

Definition 2.1 (Selective Influences, Bijective Form). An arrow
diagram (3) is said to be the diagram of selective influences for
(A1, . . . , An)(φ) and (α1, . . . , αn), and we write

(A1, . . . , An) " (α1, . . . , αn),

if, for some random entity R and for any treatment φ =
xα1
1 , . . . , xαn

n


∈ T ,

(A1, . . . , An)(φ) ∼

f1(φ{α1}, R), . . . , fn(φ{αn}, R)


=


f1(x

α1
1 , R), . . . , fn(xαn

n , R)

, (4)

where fi:αi × R → Ai (i = 1, . . . , n) are some functions, with R
denoting the set of possible values of R.3

This definition is difficult to put to work, as it refers to an
existence of a random entity (variable) R without showing how
one can find it or prove that it cannot be found. The following
criterion (necessary and sufficient condition) for (A1, . . . , An) "
(α1, . . . , αn) circumvents this problem.

Criterion 2.2 (Joint Distribution Criterion, JDC). A vector of random
variables A(φ) = (A1, . . . , An)(φ) satisfies a diagram of selective
influences (3) if and only if there is a vector of jointly distributed
random variables

H =

 for α1  
Hx

α1
1

, . . . ,Hx
α1
k1

, . . . ,

for αn  
Hxαn1

, . . . ,Hxαnkn

 ,

one random variable for each factor point of each factor, such that
Hφ{α1}

, . . . ,Hφ{αn}


∼ A(φ) (5)

for every treatment φ ∈ T .

See Dzhafarov and Kujala (2010) for a proof. The vectorH in the
formulation of the JDC is referred to as the JDC-vector for A(φ), or
the hypothetical JDC-vector for A(φ), if the existence of such a vector
of jointly distributed variables is in question.

The JDC prompts a simple justification for our definition of
selective influences. Let, for example, (A, B, C) " (α, β, γ ), with
α = {1α, 2α}, β =


1β , 2β , 3β


, γ = {1γ , 2γ , 3γ , 4γ }. Consider

3 Itwill be shown below, Theorem2.3, that randomentity R can always be chosen
to be a random variable (in the narrow sense).
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all treatments φ in which the factor point of α is fixed, say, at 1α . If
(A, B, C) " (α, β, γ ), then in the vectors of random variables

(A, B, C)

1α, 2β , 1γ


, (A, B, C)


1α, 2β , 3γ


, (A, B, C)


1α, 3β , 1γ


the marginal distribution of the variable A is one and the same,

A

1α, 2β , 1γ


∼ A


1α, 2β , 3γ


∼ A


1α, 3β , 1γ


.

But the intuition of selective influences requires more: that we
can denote this variable A (1α) because it preserves its identity
(and not just its distribution) no matter what other variables it
is paired with, (B, C)


2β , 1γ


, (B, C)


2β , 3γ


, or (B, C)


3β , 1γ


.

Analogous statements hold for A (2α), B

2β


, B


3β


, C (1γ ), etc.

The JDC formalizes the intuitive notion of variables ‘‘preserving
their identity’’ when entering in various combinations with each
other: there are jointly distributed random variables

H1α ,H2α ,H1β ,H2β ,H3β ,H1γ ,H2γ ,H3γ ,H4γ

whose identity is defined by this joint distribution; when H1α

is combined with random variables H2β and H1γ , it forms the
triad (H1α ,H2β ,H1γ ) whose distribution is the same as that
of (A, B, C)


1α, 2β , 1γ


; when the same random variable H1α

is combined with random variables H2β and H3γ , the triad
(H1α ,H2β ,H3γ ) is distributed as (A, B, C)


1α, 2β , 3γ


; and so on—

the key concept being that it is one and the same H1α which is
being paired with other variables, as opposed to different random
variables A


1α, 2β , 1γ


, A


1α, 2β , 3γ


, A


1α, 3β , 1γ


which are

identically distributed. See Dzhafarov and Kujala (2010) for a
demonstration that the identity is not generally preserved if all we
know is marginal selectivity (as defined in Section 2.5).

The following is an important consequence of JDC.

Theorem 2.3. In Definition 2.1, the random entity R can always
be chosen to be a random variable. Moreover, R can be chosen
arbitrarily, as any continuously (atomlessly) distributed random
variable, e.g., uniformly distributed between 0 and 1.

Proof. The first statement follows from the fact that R can be
chosen to coincide with the JDC-vector H , so that

fi(xαi ,H) = Hαi
xαi ,

for i = 1, . . . , n, and xαi ∈ αi. The JDC-vector H is a random vari-
able. The second statement follows from Theorem 1 in Dzhafarov
and Gluhovsky (2006), based on a general result for standard Borel
spaces (e.g., in Kechris (1995, p. 116)). �

2.5. Three basic properties of selective influences

For completeness, we list three other fundamental conse-
quences of JDC (Dzhafarov & Kujala, 2010).

2.5.1. Nestedness
For any subset {i1, . . . , ik} of {1, . . . , n}, if (A1, . . . , An) "

(α1, . . . , αn) then (Ai1 , . . . , Aik) " (αi1 , . . . , αik).

2.5.2. Complete marginal selectivity
For any subset {i1, . . . , ik} of {1, . . . , n}, if (A1, . . . , An) "

(α1, . . . , αn) then the k-marginal distribution4 of (Ai1 , . . . , Aik)(φ)
does not depend on points of the factors outside (αi1 , . . . , αik).

4 k-marginal distribution is the distribution of a subset of k random variables
(k ≥ 1) in a set ofn ≥ k variables. In Townsend and Schweickert (1989) the property
was formulated for 1-marginals of a pair of random variables. The adjective
‘‘complete’’ we use with ‘‘marginal selectivity’’ is to emphasize that we deal with
all possible marginals rather than with just 1-marginals.
In particular, the distribution of Ai only depends on points of αi,
i = 1, . . . , n.

This is, of course, a trivial consequence of the nestedness
property, but its importance lies in that it provides the easiest to
check necessary condition for selective influences.

2.5.3. Invariance under factor-point-specific transformations
Let (A1, . . . , An) " (α1, . . . , αn) and

H =


Hx

α1
1

, . . . ,Hx
αi
k1

, . . . ,Hxαn1
, . . . ,Hxαnkn


be the JDC-vector for (A1, . . . , An)(φ). Let F be any function that
applies to H componentwise and produces a corresponding vector
of random variables

F (H) =

F

xα1
1 ,Hx

α1
1


, . . . , F


xαi
k1

,Hx
αi
k1


, . . . ,

F

xαn
1 ,Hxαn1


, . . . , F


xαn
kn ,Hxαnkn


 ,

wherewe denote by F (xα, ·) the application of F to the component
labeled by xα . Clearly, F (H) possesses a joint distribution and
contains one component for each factor point. If we now define
a vector of random variables B (φ) for every treatment φ ∈ T as

(B1, . . . , Bn) (φ) =

F


φ{α1}, A1


, . . . , F


φ{αn}, An


(φ) ,

then it follows from JDC that (B1, . . . , Bn) " (α1, . . . , αn).5
A function F (xαi , ·) can be referred to as a factor-point-specific
transformation of the random variable Ai, because the random
variable is transformed differently for different points of the factor
assumed to selectively influence it. We can formulate the property
in question by saying that a diagram of selective influences
is invariant under all factor-point-specific transformations of
the random variables. Note that this includes as a special case
transformations which are not factor-point-specific, with

F

xαi
1 , ·


≡ · · · ≡ F


xαi
ki
, ·


≡ F (αi, ·) .

This property is important for construction and use of tests for
selective influences (Dzhafarov&Kujala, 2010; Kujala &Dzhafarov,
2008).

2.6. Quantum entanglement and selective influences

In psychology, the notion of selective influences was intro-
duced by Sternberg (1969), in the context of studying ‘‘stages’’
of information processing. Sternberg acknowledged that selec-
tive influences can hold even if the durations of the stages be-
ing selectively affected are not stochastically independent, but he
lacked the mathematical apparatus for dealing with this possi-
bility. Townsend (1984) was the first to study the notion of se-
lectiveness under stochastic interdependence systematically. He
proposed to formalize the notion of selectively influenced and
stochastically interdependent random variables by the concept of
‘‘indirect nonselectiveness’’: the conditional distribution of the vari-
able A1 given any value a2 of the variable A2, depends on α1 only,
and, by symmetry, the conditional distribution of A2 at any A1 = a1
depends on α2 only. Under the name of ‘‘conditionally selective
influence’’ this notion was mathematically characterized and gen-
eralized in Dzhafarov (1999). It turned out, however, that this no-
tion could not serve as a general definition of selective influences,

5 Since it is possible that F (xα,Hxα ) and F

yα,Hyα


, with xα

≠ yα , have different
sets of possible values, strictly speaking, one may need to redefine the functions to
ensure that the sets of possible values for B (φ) is the same for different φ. This is,
however, not essential (see footnote 2).
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because it did not satisfy some intuitive desiderata for such a defi-
nition, e.g., the nestedness and marginal selectivity properties for-
mulated in Section 2.5. Variants of Definition 2.1 of the present
paper were proposed in Dzhafarov (2003a) and both elaborated
and generalized in Dzhafarov and Gluhovsky (2006), Kujala and
Dzhafarov (2008); JDC was explicitly formulated in Dzhafarov and
Kujala (2010), although clearly implied in the earlier work.

Until very recently (see footnote 1) we were blissfully unaware
of the analogous developments in quantum physics. The most
conspicuous parallels can be found in Fine (1982a,b) , but that
work in turn builds on a venerable line of research and thinking:
going back first to Bell (1964), and ultimately to Einstein, Podolsky,
and Rosen’s (1935) paper. The issue in question regards two
‘‘noncommuting’’ measurements, such as those of the momentum
and of the location of a particle, or spin measurements along
two different axes. For our purposes it is sufficient to state that
when one of two noncommuting measurements is performed
(without uncertainty about the result), the second one cannot
be performed on the same system. The key insight needed to
understand the analogy with the problem of selective influences
is this: noncommuting measurements on the same system, being
mutually exclusive, can be viewed as levels (mutually exclusive values)
of one and the same external factor.

This is not entirely intuitive. Consider two particles for each of
which one can measure its momentum or its location. The analogy
requires that one view the measurement on particle 1 as a factor
α1 with twomutually exclusive levels, 1α1 (locationmeasurement)
and 2α1 (momentummeasurement); and themeasurement on par-
ticle 2 is a factorα2 with twomutually exclusive levels, 1α2 and 2α2 ,
interpreted analogously. The two measurements can be combined
in treatments, (1α1 , 1α2), (1α1 , 2α2), etc., but not within a factor,
(1α1 , 2α1) or (1α2 , 2α2). The results of each of the measurements is
a random variable, A1 for particle 1 and A2 for particle 2. The pos-
sible values A1 for A1 are possible locations of particle 1 if α1 is
at level 1α1 , but they are possible momentum values for particle 1
if α1 is at level 2α1 (which makes it awkward but still possible to
maintain the conventionmentioned in footnote 2). It is easier with
spins (Bohm & Aharonov, 1957): for instance, for spin-1/2 parti-
cles (such as electrons), A1 consists of two possible values of spin
in one direction if α1 is at level 1α1 and of two possible values of
spin in another direction if the level is 2α1 . These two two-element
sets are more natural to consider ‘‘the same’’.

With all this in mind, the question now can be posed in the
familiar to us form: can we say that (A1, A2) " (α1, α2), or can
themeasurement (factor)α1 influence the result (randomvariable)
A2 and/or α2 influence A1? In the Einstein–Podolsky–Rosen (EPR)
paradigm involving entangled particles, the two random outcomes
A1, A2 are stochastically interdependent, and their joint distribu-
tion at every treatment is (correctly) predicted by the quantum
theory. The question therefore becomes: are the predicted (and ob-
served) joint distributions of (A1, A2) compatible with the hypoth-
esis (A1, A2) " (α1, α2)? Einstein et al. (1935) took (A1, A2) "
(α1, α2) for granted if the two particles are separated in space and
measured simultaneously (in some inertial frame of reference).

Bell’s (1964) celebrated theorem shows that (A1, A2) "
(α1, α2) is not the case for entangled spin-1/2 particles obeying
the laws of quantum mechanics. The reason this result is
considered to be of foundational importance (‘‘the most profound
discovery in science’’, repeating the oft-quoted characterization
by Stapp (1975)) is that Bell essentially adopted Definition 2.1 for
(A1, A2) " (α1, α2) and identified the random entity R with the
set of all hidden variables of a conceivable theory ‘‘explaining’’ the
dependence of (A1, A2)on (α1, α2): knowing a value ofRonewould
be able to predict, through the functions f1 and f2 of Definition 2.1,
the values of (A1, A2). In addition to being called ‘‘hidden’’ the
variables entailed in R are referred to as ‘‘context-independent’’
(meaning that the distribution of R and the functions f1, f2 do not
depend on treatments) and ‘‘local’’ (meaning, essentially, that in
the theory involving R and f1, f2 the measurement α1 does not
influence A2, nor α2 influences A1). Bell’s (1964) theorem therefore
is interpreted as stating that quantum predictions regarding two
entangled spin-1/2 particles cannot be explained by any theory
involving context-independent and local variables.

A rejection of (A1, A2) " (α1, α2) in quantum physics can be
handled by dispensing with locality (Bohm’s approach), but most
physicists find this untenable (measurement α1 cannot influence
A2 if they are separated by a space-like interval). The quantum
probability theory can be viewed as a way of allowing for context-
dependence while retaining locality. In behavioral applications
both locality and context-independence can be targeted when
(A1, A2) " (α1, α2) is rejected, and distinguishing the two is a
challenge.

Following the logic of Bell’s work, Clauser, Horne, Shimony, and
Holt (1969) derived a system of inequalities that are necessary
conditions for (A1, A2) " (α1, α2) in the EPR paradigm
with two particles and two measurements (factors) with binary
outcomes. These inequalities are subsumed in Fine’s (1982a,b)
ones (discussed in Section 3.5), which present both necessary and
sufficient conditions for (A1, A2) " (α1, α2), based on JDC. The
latter was introduced in Fine’s papers for the first time (and called
by this name too), although the earlier Suppes and Zanotti (1981)
Theorem on Common Causes can also be viewed as a special form
of JDC.

Fine’s inequalities form a special case of the Linear Feasibility
Test considered in the next section. We therefore defer further
discussion of the EPR paradigm to Section 3.5, and conclude the
present section by the following table of correspondences:

Selective probabilistic
causality

Quantum entanglement
problem (for spins)

Observed random output Detected spin value of a
given particle

Factor/input Spin measurement in a
given particle

Factor level Setting (axis) of the spin
measurement

Joint distribution
criterion

Joint distribution criterion

Canonical diagram of
selective influences

‘‘Classical’’ explanation (by
context-independent local
variables)

3. Linear feasibility test

In this section we assume that for each random variable Ai(φ)
in (A1, . . . , An)(φ) the setAi of its possible values hasmi elements,
ai1, . . . , a

i
mi
. It is arguably the most important special case both

because it is ubiquitous and because in all other cases random
variables can be discretized into finite number of categories. We
are interested in establishing the truth or falsity of the diagram
of selective influences (3), where each factor αj in (α1, . . . , αn)

contains kj factor points xj1, . . . , x
j
kj

(written so instead of more

formal x
αj
1 , . . . , x

αj
kj
). The Linear Feasibility Test (LFT) to be described

is a direct application of JDC to this situation, furnishing a necessary
and sufficient condition for the diagram of selective influences
(A1, . . . , An) " (α1, . . . , αn).
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3.1. The test

In the hypothetical JDC-vector

H =


Hx11

, . . . ,Hx1k1
, . . . ,Hxn1

, . . . ,Hxnkn


,

sincewe assume that, for any point xij of factorα
i and any treatment

φ containing xij,

Hxij
∼ Ai (φ) ,

we know that the set of possible values for the random variableHxij

is

ai1, . . . , a

i
mi


, irrespective of j. Denote

Pr

A1 = a1l1 , . . . , An = anln

 
x1j1 , . . . , x

n
jn


= P

 for r.v.s  
l1, . . . , ln ;

for factor points  
j1, . . . , jn

 , (6)

where li ∈ {1, . . . ,mi} and ji ∈ {1, . . . , ki} for i = 1, . . . , n (‘‘r.v.s’’
abbreviates ‘‘random variables’’). Denote

Pr

Hx11
= a1l11 , . . . ,Hx1k1

= a1l1k1
, . . . ,

Hxn1
= anln1 , . . . ,Hxnkn

= anlnkn


= Q

 for A1  
l11, . . . , l1k1 , . . . ,

for An  
ln1, . . . , lnkn

 , (7)

where lij ∈ {1, . . . ,mi} for i = 1, . . . , n. This gives us mk1
1 ×

· · · × mkn
n Q -probabilities. A required joint distribution for the

JDC-vector H exists if and only if these probabilities can be found
subject tomk1

1 × · · · × mkn
n nonnegativity constraints

Q

l11, . . . , l1k1 , . . . , ln1, . . . , lnkn


≥ 0, (8)

and (denoting by nT the number of treatments in T ) nT ×m1×· · ·×

mn linear equations
Q


l11, . . . , l1k1 , . . . , ln1, . . . , lnkn


= P (l1, . . . , ln; j1, . . . , jn) , (9)

where the summation is across all possible values of the

l11, . . . ,

l1k1 , . . . , ln1, . . . , lnkn

subject to

l1j1 = l1, . . . , lnjn = ln.6

This can bemore compactly formulated in amatrix form. Let the
observable probabilities P (l1, . . . , ln; j1, . . . , jn) constitute compo-
nents of a nT × m1 × · · · × mn-dimensional column vector P, with
its cells lexicographically enumerated by (l1, . . . , ln; j1, . . . , jn). Let
the hypothetical probabilities Q


l11, . . . , l1k1 , . . . , ln1, . . . , lnkn


constitute components of a mk1

1 × · · · × mkn
n -dimensional col-

umn vector Q , with its cells lexicographically enumerated by
l11, . . . , l1k1 , . . . , ln1, . . . , lnkn


. Let M be a Boolean matrix with

nT × m1 × · · · × mn rows and mk1
1 × · · · × mkn

n columns lexico-
graphically enumerated in the same way as, respectively, P and
Q , such that the entry in the cell in the (l1, . . . , ln; j1, . . . , jn)th
row and


l11, . . . , l1k1 , . . . , ln1, . . . , lnkn


th column is 1 if l1j1 =

l1, . . . , lnjn = ln; otherwise the entry is 0. Clearly, the vector Q ex-
ists if and only if the system

MQ = P, Q ≥ 0 (10)

6 The sum of all Q ’s is 1 because it equals the sum of all P ’s (across all l1, . . . , ln)
for any given treatment j1, . . . , jn .
(with the inequality understood componentwise) has a solution.
This is a typical linear programming (LP) problem. More precisely,
this is an LP task in the standard form and with a dummy objective
function (e.g., a linear combination with zero coefficients). It
is known (Karmarkar, 1984; Khachiyan, 1979) that it is always
possible, in polynomial time, to either find a solution for such
a system or to determine that it does not exist. Many standard
software packages can handle this problem (e.g., GNU Linear
Programming Kit at http://www.gnu.org/software/glpk/).

3.2. Properties of the LP problem

The rank of matrixM is always strictly smaller than the number
of components in P. This follows from the fact that for any two
allowable treatments ( j1, . . . , jn) and


j′1, . . . , j

′
n


that share a

subvector
( j1′ , . . . , js′) =


j′1′ , . . . , j′s′


(where we use


1′, . . . , s′


to designate s distinct elements chosen

from {1, . . . , n}), and for any fixed (v1, . . . , vs), the sum of all rows
of M corresponding to (l1, . . . , ln; j1, . . . , jn)th components of P
with (l1′ , . . . , ls′) = (v1, . . . , vs) is the same Boolean vector as
the sum of all rows ofM corresponding to


l1, . . . , ln; j′1, . . . , j

′
n


th

components of P with the same property. The upper limit for the
rank of matrixM is given in the following theorem.

Theorem 3.1. The rank of M for a maximal set of treatments T =

α1 × · · · × αn is

(k1 (m1 − 1) + 1) · · · (kn (mn − 1) + 1) .

Proof. Given any
1′, . . . , s′


⊂ {1, . . . , n} ,

( j1′ , . . . , js′) ∈ {1, . . . , k1′} × · · · × {1, . . . , ks′} ,

(l1′ , . . . , ls′) ∈ {1, . . . ,m1′} × · · · × {1, . . . ,ms′} ,

letV(1′, . . . , s′; j1′ , . . . , js′; l1′ , . . . , ls′)denote an (m1)
k1 · · · (mn)

kn-
component Boolean row vector whose components are lexico-
graphically enumerated in the same way as Q , and such that its
l11, . . . , l1k1 , . . . , ln1, . . . , lnkn


th component is 1 if and only if

l1′j1′ = l1′ , . . . , ls′js′ = ls′ .

The rows of matrix M are V(1, . . . , n; j1, . . . , jn; l1, . . . , ln)-
vectors. It is easy to check that for any fixed (1′, . . . , s′; j1′ ,
. . . , js′), the sum of the rows of M corresponding to fixed values
(l1′ , . . . , ls′) is V(1′, . . . , s′; j1′ , . . . , js′; l1′ , . . . , ls′). It follows that
for s = n, n − 1, . . . , 1, a vector V(1′, . . . , s′; j1′ , . . . , js′; l1′ , . . . ,
ls′) in which all li′ = 1 except for i′ ∈ {1′′, . . . , v′′

} ⊂ {1′, . . . , s′}
(a subset of v < s distinct elements), is a linear combination of the
vector

V

1′′, . . . , v′′

; j1′′ , . . . , jv′′; l1′′ , . . . , lv′′


and all the vectors

V

1′, . . . , s′; j1′ , . . . , js′; l1′ , . . . , ls′


for which all li′ > 1 and

{j1′′ , . . . , jv′′; l1′′ , . . . , lv′′} ⊂ {j1′ , . . . , js′; l1′ , . . . , ls′} .

As a result the rows ofM are linear combinations of the rows ofM∗

consisting of vectors

V

1′, . . . , s′; j1′ , . . . , js′; l1′ , . . . , ls′


for all possible
1′, . . . , s′


⊂ {1, . . . , n} ,

( j1′ , . . . , js′) ∈ {1, . . . , k1′} × · · · × {1, . . . , ks′} ,

(l1′ , . . . , ls′) ∈ {2, . . . ,m1′} × · · · × {2, . . . ,ms′} .

http://www.gnu.org/software/glpk/)
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By straightforward combinatorics the number of such vectors is

(k1 (m1 − 1) + 1) · · · (kn (mn − 1) + 1) .

The rows of M∗ are linearly independent because the column cor-
responding to the (l11 = 1, . . . , l1k1 = 1, . . . , ln1 = 1, . . . , lnkn =

1)th component of Q contains a single 1, in the row of M∗ corre-
sponding to s = 0 (which row contains 1’s only). �

Note that

ki (mi − 1) + 1 < mki
i

for all ki ≥ 2 andmi ≥ 1. This means that

(k1 (m1 − 1) + 1) · · · (kn (mn − 1) + 1) < (m1)
k1 · · · (mn)

kn ,

and the systemMQ = P is always underdetermined.

Corollary 3.2. If P satisfies marginal selectivity, then system (10) is
equivalent to

M∗Q = P∗, Q ≥ 0, (11)

where M∗ is as defined in the proof above, and P∗ is the ‘‘reduced
hierarchical’’ vector with components

Pr


A1′ = a1
′

l1′
, . . . , As′ = as

′

ls′

 
x1

′

j1′
, . . . , xs

′

js′


= P∗

1′,...,s′ (l1′ , . . . , ls′; j1′ , . . . , js′) , (12)

where s = 0, . . . , n,

1′, . . . , s′


⊂ {1, . . . , n}, and li′ ∈ {2, . . . ,mi}

for each i′ ∈

1′, . . . , s′


.M∗ is of full row rank.

To comment on this corollary, it follows from the proof of
Theorem 3.1 that MQ = P never has a solution if vector P violates
the equality

Pr

A1 = a1l1 , . . . , An = anln

 
x1j1 , . . . , x

n
jn


=


Pr


A1 = a1l1 , . . . , An = anln

 
x1j′1

, . . . , xnj′n


,

where the summation is across all values of (l1, . . . , ln)with a fixed
(l1′ , . . . , ls′). Clearly, this necessary condition is just anotherway of
stating marginal selectivity. Assuming that P does satisfy marginal
selectivity, it can be represented by the ‘‘reduced hierarchical’’
vector P∗ whose components are marginal probabilities of all
orders, with s = 0 corresponding to the probability 1.

3.3. Examples

Example 3.3. Let α = {1α, 2α}, β =

1β , 2β


, and the set of

allowable treatments T consist of all four possible combinations of
the factor points. Let A and B be Bernoulli variables, a1 = b1 = 1,
a2 = b2 = 2, distributed as shown:

Marginal selectivity here is satisfied trivially: all marginal
probabilities are equal 0.5, for all treatments. In the matrix form
of the LFT, the column-vector of the above 16 probabilities,

(.140, .360, .360, . . . , .040, .040, .460)⊤,
using ⊤ for transposition, is denoted by P. The LFT problem is
defined by the systemMQ = P, Q ≥ 0, where the 16×16 Boolean
matrix M is shown below: each column of the matrix corresponds
to a combination of values for the hypotheticalH-variables (shown
above thematrix), while each row corresponds to a combination of
a treatment with values of the outputs A, B (shown on the left).

The linear programming routine of MathematicaTM (using the
interior point algorithm) shows that the linear equations (9) have
nonnegative solutions corresponding to the JDC-vector

The column-vector of these probabilities constitutes Q > 0. This
proves that in this case we do have (A, B) " (α, β). �

Example 3.4. In the previous example, let us change the distribu-
tions of (A, B) to the following:

Once again, marginal selectivity is satisfied trivially, as all
marginal probabilities are 0.5, for all treatments. The linear
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programming routine of MathematicaTM, however, shows that the
linear equations (9) have no nonnegative solutions. This excludes
the existence of a JDC-vector for this situations, ruling out thereby
the possibility of (A, B) " (α, β). �

3.4. Renaming and grouping

Since LFT is both a necessary and sufficient condition for
selective influences, if it is passed for (A1, . . . , An)(φ), it is
guaranteed to be passed following any factor-point-specific
transformations of these randomoutputs. All such transformations
in the case of discrete random variables can be described
as combinations of renaming (factor-point specific one) and
coarsening (grouping of some values together). In fact, the
coutcome of LFT simply does not depend on the values of
the random variables involved, only their probabilities matter.
Therefore a renaming will not change anything in the system of
linear equations and inequalities (8)–(9). An example of coarsening
will be redefining A and B, each having possible values 1, 2, 3, 4,
into binary variables

A∗ (φ) =


1 if A (φ) = 1, 2,
2 if A (φ) = 3, 4,

B∗ (φ) =


1 if B (φ) = 1, 2, 3,
2 if B (φ) = 4.

It is clear that any such a redefinition amounts to replacing
some of the equations in (9) with their sums. Therefore, if the
original system has a solution, so will also the system after such
replacements. Of course, the reverse is not generally true: the
coarser system can have solutions when the original system does
not.

The same is true for coarsening the system by grouping
together some of the factor points within factors. Suppose
we want to group together points x11 and x12 of factor α1
containingmore than two points. Thismeans that the probabilities
P (l1, l2, . . . , ln; j1, j2, . . . , jn) are redefined as7

P ′ (l1, l2, . . . , ln; j1, j2, . . . , jn)

=


1
2
P (l1, l2, . . . , ln; 1, j2, . . . , jn)

+
1
2
P (l1, l2, . . . , ln; 2, j2, . . . , jn) if j1 = 1,

P (l1, l2, . . . , ln; j1 + 1, j2, . . . , jn) if j1 > 1.

When we average the original equations for P(l1, l2, . . . , ln;
1, j2, . . . , jn) and P(l1, l2, . . . , ln; 2, j2, . . . , jn), we get 

1
2


l12

Q

l11 = l1, l12, . . . , l1k1 , . . . , ln1, . . . , lnkn


+

1
2


l11

Q

l11, l12 = l1 . . . , l1k1 , . . . , ln1, . . . , lnkn


= P ′ (l1, l2, . . . , ln; 1, j2, . . . , jn) ,

where l2j2 = l2, . . . , lnjn = ln and the outer summation is across all
lij except for the following values for (i, j): (1, 1), (1, 2), and (i, ji),

7 More general mixtures, πP (l1, l2, . . . , ln; 1, j2, . . . , jn) + (1 − π) P(l1, l2,
. . . , ln; 2, j2, . . . , jn) for 0 < π ≤ 1, are dealt with as easily; moreover, π = 1
formally corresponds to dropping the factor point x12 , considered below. The values
of π other than 1

2 and 1 can be useful if the grouping is done on a sample level, to
reflect the differences in sample sizes corresponding to treatments containing x11
and x12 .
i = 2, . . . , n. We define a new vector Q ′ whose dimensionality is
less than that of Q by one, putting

Q ′

l11 = l, l13, . . . , l1k1 , . . . , ln1, . . . , lnkn


=

1
2


l12

Q

l11 = l, l12, l13, . . . , l1k1 , . . . , ln1, . . . , lnkn


+

1
2


l11

Q

l11, l12 = l, l13, . . . , l1k1 , . . . , ln1, . . . , lnkn


,

where l has the same range as any of l1j. (For notational simplicity,
in Q ′ we do not re-enumerate (1, 3) as (1, 2), (1, 4) as (1, 3), etc.,
leaving thereby l12 undefined)

For any point of factor α1 other than x11 and x12, say, x
1
3, we have

then
l11,l12

Q

l11, l12, . . . , l1k1 , . . . , ln1, . . . , lnkn


= P (l1, l2 . . . , ln; 3, j2 . . . , jn) ,

which can be presented as 
l


1
2


l12

Q (l11 = l, l12, l13 = l1, . . . , l1k1 , . . . , ln1, . . . , lnkn)

+
1
2


l11

Q

l11, l12 = l, l13 = l1, . . . , l1k1 , . . . , ln1, . . . , lnkn

 
= P (l1, l2 . . . , ln; 3, j2 . . . , jn) .

This is equivalent to
Q ′


l11, l13 = l1, . . . , l1k1 , . . . , ln1, . . . , lnkn


= P ′ (l1, l2 . . . , ln; j1 = 2, j2 . . . , jn) ,

where l2j2 = l2, . . . , lnjn = ln, and the summation is across all lij
except for (i, j) = (1, 3) and (i, j) = (i, ji), i = 2, . . . , n. So we
have obtained a solution for the factor-coarsened system from a
solution for the original system.

Dropping a point, say, x12 is even simpler:wedelete all rowswith
j1 = 2, and then redefine the Q vector as

Q ′

l11, l13, . . . , l1k1 , . . . , ln1, . . . , lnkn


=


l12

Q

l11, l12, l13, . . . , l1k1 , . . . , ln1, . . . , lnkn


.

If the random variables involved have more than finite number
of values and/or the factors consist of more than finite number
of factor points, or if these numbers, though finite, are too large
to handle the ensuing linear programming problem, then LFT
can still be used after the values of the random variables and/or
factors have been appropriately grouped. LFT then becomes only
a necessary condition for selective influences (with respect to the
original systemof factors and randomvariables), and its resultswill
generally be different for different (non-nested) groupings.

Example 3.5. Consider the hypothesis (A, B) " (α, β) with the
factors having a finite number of factor points each, and A and B
being response times. To use LFT, one can transform the random
variable A as, say,

A∗ (φ) =


1 if A (φ) ≤ a1/4 (φ) ,
2 if a1/4 (φ) < A (φ) ≤ a1/2 (φ) ,
3 if a1/2 (φ) < A (φ) ≤ a3/4 (φ) ,
4 if A (φ) > a3/4 (φ) ,

and transform B as

B∗ (φ) =


1 if B (φ) ≤ b1/2 (φ) ,
2 if B (φ) > b1/2 (φ) ,



62 E.N. Dzhafarov, J.V. Kujala / Journal of Mathematical Psychology 56 (2012) 54–63
where ap (φ) and bp (φ) designate the pth quantiles of, respectively
A (φ) and B (φ). The initial hypothesis now is reformulated as
(A∗, B∗) " (α, β), with the understanding that if it is rejected then
the initial hypothesis will be rejected too (a necessary condition
only). LFT will now be applied to distributions of the form

where the marginals for A are constrained to 0.25 and the
marginals for B to 0.5, for all treatments


xα, yβ


, yielding a trivial

compliance with marginal selectivity. Note that the test may very
well uphold (A∗, B∗) " (α, β) even if marginal selectivity is
violated for (A, B)(φ) (e.g., if the quantiles ap


xα, yβ


change as a

function of yβ ). �

3.5. Quantum entanglement

Fine’s (1982a,b) inequalities relate to the simplest EPR paradigm,
with the number of particles n = 2, number of spin axes per par-
ticle k1 = k2 = 2, and the number of possible spin values per
particle m1 = m2 = 2 (this value being the same for all spin axes
chosen for a given particle). They can be written, with reference to
(6) and (12), as

−1 ≤ P (2, 2 ; j1, j2) + P

2, 2 ; j′1, j2


+ P


2, 2 ; j′1, j

′

2


− P


2, 2 ; j1, j′2


− P∗

1


2 ; j′1


− P∗

2 ( 2 ; j2) ≤ 0,

where j1, j′1 ∈ {1, 2}, j2, j′2 ∈ {1, 2}, j1 ≠ j′1, j2 ≠ j′2. These
inequalities constitute the necessary and sufficient conditions for
(A1, A2) " (α1, α2), with marginal selectivity assumed implicitly.
Although Fine’s derivation of these inequalities is different,
they can be derived as solutions of system (11), with P∗ the
9-component vector (using ⊤ for transposition)
1, P∗

1 ( 2 ; 1), . . . , P∗

2 ( 2 ; 2), P(2, 2 ; 1, 1), . . . , P(2, 2 ; 2, 2)
⊤

,

Q the 16-component vector

(Q (1, 1, 1, 1) , . . . ,Q (2, 2, 2, 2))⊤ ,

and M∗ the corresponding 9 × 16 Boolean matrix,

In fact, using a standard facet enumeration program (e.g.,
lrs program at http://cgm.cs.mcgill.ca/~avis/C/lrs.html) these in-
equalities (together with the equalities representing marginal
selectivity) can be derived ‘‘mechanically’’. The essence of the com-
putation is in the fact that a linear system (10) or (11) is feasible if
and only if the point P (respectively, P∗) belongs to the convex hull
of the points corresponding to the columns ofM (respectively,M∗),
which form a subset of the vertices of a unit hypercube. The facet
enumeration programs derive inequalities describing this convex
hull.

Given a set of numerical (experimentally estimated or theoreti-
cal) probabilities, computing the LP problem (10) or (11) is always
preferable to dealing with explicit inequalities as their number be-
comes very large even for moderate-size vectors P . While Fine’s
inequalities for n = 2, k1 = k2 = 2, m1 = m2 = 2 (assuming
marginal selectivity) number just 8, already for n = 2, k1 = k2 = 2
with m1 = m2 = 3 (describing, e.g., an EPR experiment with
two spin-1 particles, or two spin-1/2 ones and inefficient detec-
tors), our computations yield 1080 inequalities, and for n = 3,
k1 = k2 = k3 = 2 and m1 = m2 = m3 = 2, corresponding to
the Greenberger, Horne, and Zeilinger (1989) paradigmwith three
spin-1/2 particles, this number is 53,792.

The potential of JDC to lead to LFT and provide an ultimate
criterion for the entanglement problem has not been utilized in
quantum physics until relatively recently, when LFT was proposed
in Werner and Wolf (2001a,b) and Basoalto and Percival (2003).
Prior to this, criteria (as opposed to just necessary conditions)
for the possibility of a classical explanation for an EPR paradigm
involving multiple particles, multiple measurement settings, and
multiple outcomes per measurements were only known under
strong symmetry constraints (de Barros & Suppes, 2001; Garg,
1983; Mermin, 1990; Peres, 1999).

3.6. Sample-level tests

Although this paper is not concerned with statistical questions,
itmay be useful tomention some of the approaches to constructing
sample-level tests based on LFT. As mentioned in Section 3.5, the
set of vectors P for which the system MQ = P,Q ≥ 0 has
a solution forms a convex polytope. In particular, if the set T of
allowable treatments contains all combinations of factors points,
the polytope is the ((k1 (m1 − 1) + 1) · · · (kn (mn − 1) + 1) − 1)-
dimensional convex hull of the points corresponding to the
columns of the Boolean matrix M, which form a subset of the
vertices of the (m1)

k1 · · · (mn)
kn -dimensional unit hypercube.

Recently Davis-Stober (2009) developed a statistical theory for
testing the hypothesis that a vector of probabilities P (not
necessarily of the same structure as in LFT) belongs to a convex
polytope P against the hypothesis that it does not. Under certain
regularity constraints he derived the asymptotic distribution (a
convex mixture of chi-square distributions) for the log maximum
likelihood ratio statistic

−2 log
max
P∈P

L (P|N)

max
P

L (P|N)
,

where N is the vector of observed absolute frequencies, comprised
of the numbers of occurrences of (l1, . . . , ln; j1, . . . , jn) in the case
of LFT. The likelihoods L (P|N) are computed using the standard
theory of multinomial distributions. This theory has been ‘‘test-
driven’’ on the polytopes related to the transitivity of preferences
problem (Regenwetter, Dana, & Davis-Stober, 2010, 2011). A
Bayesian approach to the same problem is presented in Myung,
Karabatsos, and Iverson (2005).

Other approaches readily suggest themselves. One of them is
to use the known theory of L (P|N) /maxP L (P|N) to compute a
confidence region of possible probability vectors P for a given
empirical vector N. The hypothesis of selective influences is
retained or rejected according as this confidence region contains or

http://cgm.cs.mcgill.ca/~avis/C/lrs.html
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does not contain a point P that passes LFT. Resampling techniques
is another obvious approach, e.g., the permutation test in which
the assignment of empirical distributions to different treatments is
randomly ‘‘reshuffled’’ so that each distribution generally ends up
assigned to a ‘‘wrong’’ treatment. If the proportion of the permuted
assignments whose deviation from the LFT polytope does not
exceed that of the observed estimate of P is sufficiently small, the
hypothesis of selective influences can be considered supported.

Little is known at present about the computational feasibility
and statistical properties of these and similar procedures. In
particular (this also applies to Davis-Stober’s test), we do not know
their statistical power for different locations of the true vector
of probabilities outside the convex polytope described by MQ =

P, Q ≥ 0. Nor do we know how the effect size, a measure of
deviation of P from the polytope, should be computed optimally.
All of this will have to be investigated separately.

4. Conclusion

Selectiveness in the influences exerted by a set of inputs upon
a set of random and stochastically interdependent outputs is a
critical feature of many psychological models, often built into
the very language of these models. We speak of an internal
representation of a given stimulus, as separate from an internal
representation of another stimulus, even if these representations
are considered random entities and they are not independent. We
speak of decompositions of response time into signal-dependent
and signal-independent components, or into a perceptual stage
(influenced by stimuli) and a memory-search stage (influenced by
the number of memorized items), without necessarily assuming
that the two components or stages are stochastically independent.

In this paper, we have described the Linear Feasibility Test,
an application of the fundamental Joint Distribution Criterion for
selective influences to random variables with finite numbers of
values. This test can be performed by means of standard linear
programming. Due to the fact that any random output can be
discretized, the Linear Feasibility Test is universally applicable,
although one should keep in mind that if a diagram of selective
influences is upheld by the test at some discretization, it may be
rejected at a finer or non-nested discretization (but not at a coarser
one). Both the Joint Distribution Criterion and the Linear Feasibility
Test, although new in the behavioral context, have their direct
analogues in quantum physics, in dealing with the problem of the
existence of a classical explanation (onewith non-contextual, local
hidden variables) for outcomes of noncommuting measurements
performed on entangled particles. The discovery of these parallels
promises to enrich and facilitate our understanding of selective
influences.
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