
Perceptual Matching and Sorites:

Experimental Study of an Ancient Greek Paradox

Ehtibar N. Dzhafarov⇤ and Lacey Perry

Purdue University

Loosely derived from the sorites “paradox” attributed to the 4th century BCE Greek philosopher Eubulides, comparative soritical

sequence of stimuli is defined as an enumeration of several stimuli, x1, x2, . . . , xn, such that, when these stimuli are presented

pairwise, any two of them with consecutive numbers appear “identical,” whereas the first and the last ones do not. There is a

widespread belief that stimuli of virtually any kind can be arranged in soritical sequences. This belief, often presented as a “well-

known” empirical fact, is in fact based on the following piece of persuasive reasoning: an observer “obviously” should not be able to

distinguish physically very similar stimuli, whereas sufficient number of very small differences eventually add up to an arbitrarily

large and clearly discernible one. However, this view overlooks the well-known empirical fact that discrimination judgments are

fundamentally probabilistic. One and the same pair of stimuli, including two physically identical ones, will sometimes be judged

the same and sometimes different. Therefore, in order for the truth or falsity of the relation “stimulus x is perceptually matched

by stimulus y” to be uniquely determined by x and y, this relation should be computed from probability distributions rather than

directly observed. We show that if one uses conventional psychophysical computations of matching stimuli, soritical sequences need

not exist, and that in fact there is no empirical evidence they do. In particular, we develop a mathematical theory for a procedure in

which stimuli are repeatedly adjusted to match each other, and we present negative results of an experimental investigation aimed

at detecting soritical sequences.
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1. INTRODUCTION

It is a widespread belief among philosophers dealing with

perceptual phenomenology, but also among psychologists,

that the relation “x is perceptually matched by y” is re-

flexive, symmetric, but not transitive (Armstrong, 1968;

Dummett, 1975; Goodman, 1951; Wright, 1975). The lack

of transitivity is taken to mean that if x is matched by y in

appearance, and y is matched by z, it is possible that x is

not matched by z. Reflexivity (x is always matched by x)

and symmetry (if x is matched by y, then y is matched by
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x) are considered “obvious” both by the many who argue

against transitivity and by the few (Graff, 2001; Jackson &

Pinkerton, 1973) who argue for it.

In psychology, the belief that perceptual matching

is intransitive led to the powerful algebraic notion of

semiorders. In the article introducing this notion Luce

(1956) presents the following example:

Find a subject who prefers a cup of coffee with

one cube of sugar to one with five cubes (this

should not be difficult). Now prepare 401 cups

of coffee with (1 + i

100 )x grams of sugar, i =

0, 1, . . . , 400, where x is the weight of one cube

of sugar. It is evident (our emphasis, E.D. &

L.P.) that he will be indifferent between cup i

and cup i+1, for any i, but by choice he is not
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indifferent between i = 0 and i = 400 (p. 179).

This example may be interpreted in two different ways.

Interpretation 1: Classificatory sorites. Assume the

cups of coffee are being tasted one at a time and judged to

be either “too sweet” or “not too sweet.” The “indifference”

mentioned in the example then means that if a cup of coffee

with v amount of sugar was assigned the category “not too

sweet,” then the same category will have to assigned to the

cup of coffee with v + �v amount of sugar, provided �v

is small enough; and if v was assigned the category “too

sweet,” then so will have to be v ��v.

The truth of these statements may seem entirely “evi-

dent” (if not, many can be induced to accept them if one

makes �v even smaller than mentioned by Luce, say, a sin-

gle molecule of sugar), as will probably seem the truth of

the following generalization:

Classificatory Tolerance: when choosing be-

tween two categories, two stimuli that are suf-

ficiently close physically are assigned the same

category.

The terms “sorites” and “soritical” derive from the piece

of reasoning attributed to a Greek philosopher Eubulides

of Miletus who lived in the 4th century BCE. “Soros” in

Greek means “heap.” Eubulides argued that if N grains of

sand form a heap, then the same should be true for N � 1

grains of sand; but by removing from a heap one grain at

a time one will necessarily end up with too few grains to

form a heap — a contradiction. (There is another popular

form of the paradox, known by the Greek name “falakros”

(bald), in which “heap” is replaced with “full head of hair”

and grains with hairs.) Sorites, including its comparative

version discussed below, has been and remains one of the

hotly debated issues in philosophy (see, e.g., the book of

chapters edited by Beall, 2003).

Interpretation 2: Comparative sorites. Assume now

the cups of coffee are being presented in pairs, Luce’s sub-

ject sips first from one of them, then from another, and

judges them to be “same” or “different” (in sweetness). In

this scenario the “indifference” means the assignment of the

category “same”: if �v is sufficiently small (think again of a

single molecule of sugar), the coffee cups with v and v+�v

sugar are “evidently” to be judged to be the same.

The generalization of this is the following proposition:

Comparative Tolerance: when presented

pairwise, two stimuli that are sufficiently close

physically are judged to match (to appear the

same).

This category of sorites (sometimes also referred to as “phe-

nomenological sorites”) may appear to be just a minor mod-

ification of the classificatory one, but they are easily shown

to be fundamentally different.

Consider a sequence of coffee cups containing

v1, v2, . . . , vn amounts of sugar, with the following

properties:

(CL1) for each i = 1, 2, ..., n � 1, v
i

and v
i+1 are so close

physically that they have to be assigned the same

category in accordance with Classificatory Tolerance;

(CL2) the categories assigned to v1 and v
n

are different.

This so-called classificatory soritical sequence (Dzhafarov &

Dzhafarov, 2010a) is clearly a logical impossibility. As with

any other logical contradiction, this indicates that some

false or mutually incompatible assumptions are involved.

Consider now a similarly enumerated sequence of coffee

cups but with the following properties:

(CO1) for each i = 1, 2, ..., n � 1, v
i

and v
i+1 are so

close physically that the pair (v
i

, v
i+1) has to be as-

signed the category “they match” (or “they appear the

same”), in accordance with Comparative Tolerance;

(CO2) the category assigned to the pair (v1, vn) is “they

do not match” (“they appear different”).
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This is called a comparative soritical sequence (Dzhafarov

& Dzhafarov, 2010b), and such a sequence is easily seen

to entail no contradiction. Thus, for a computer program

that prints out “they match” when two numbers differ by

less than 0.01 and “they do not match” otherwise, 1,1.004,

1.008, 1.012 is a comparative soritical sequence.

Why are CL1-CL2 so different from CO1-CO2? Because

whatever the meaning of the categories used in the classi-

ficatory sorites (such as “too sweet” and “not too sweet”)

their coincidence or difference is an objective relation: “too

sweet”=“too sweet” and “too sweet” 6=”not too sweet.” By

contrast, the category “match” can be given different mean-

ings, and some of them (e.g., “match” means “approxi-

mately equal”) can create comparative soritical sequences.

It is a theoretical question what meaning of “matching” per-

tains to human comparative judgments, and an empirical

problem to find out whether it is of the variety that can

produce soritical sequences.

The incompatible assumptions underlying classificatory

sorites have been analyzed on a very high level of gen-

erality in Dzhafarov and Dzhafarov (2010a, 2012). The

present paper focuses on comparative sorites. Dzhafarov

and Dzhafarov (2010b, 2012) argued that although com-

parative soritical sequences are logically possible, it is far

from being evident that human judgments of perceptual

matching can lead to such sequences, provided one uses

the conventional psychophysical ways of determining what

is matched by what. In fact, it is far from being obvious

how the transitivity is to be defined in the context of per-

ceptual matching, and the same applies to symmetry and

reflexivity.

In this paper, following a brief logical analysis of the

issues involved, we present empirical evidence supporting

the view that the relation “is matched by” is transitive in the

context of matching by adjustment, when the participant is

presented a pair of stimuli and asked to adjust one of them

until she judges the two stimuli to appear the same. The

experimental procedure used and its theoretical treatment

extend those described in Dzhafarov and Perry (2010).

To prevent confusion, although we chose to make Luce’s

example with coffee cups our departure point, we are not

dealing with preferences in the sense of comparative at-

tractiveness of perceptually distinct stimuli (gambles, pur-

chases, election candidates, meeting locations, etc.). One

may be indifferent between two cups of coffee because they

taste the same to her (which is the meaning we focus on)

or because she does not think one of them tastes any bet-

ter than the other, even if they taste clearly different. Or

she can indicate that it does not matter to her whether she

gets x cents or x+ 1 cents, even though she clearly under-

stands the difference and would abandon her indifference if

the purchasing power of 1 cent increased. In the analysis

of preference and attractiveness the issues related to var-

ious forms of transitivity are numerous and complex (see,

e.g., Regenwetter, Dana, & Davis-Stober, 2011; Regenwet-

ter & Davis-Stober, 2012), but they have little to do with

the soritical issues. One can, as usual, find boundary cases,

but we need not consider them. The belief in the ubiqui-

tous soritical sequences that we are concerned with here is

based on if not confined to clear-cut perceptual attributes,

such as color, loudness, shape, or sweetness.

2. COMPARATIVE SORITES UNDER PSY-

CHOPHYSICAL SCRUTINY

2.1. Observation Areas

One aspect of soritical situations that escapes all philoso-

phers and most psychologists is that when x and y are com-

pared, overall or in some property, they must clearly differ

in some properties that define them as two distinct stim-

uli. In perceptual tasks these properties necessarily include

temporal order and/or spatial locations. If one compares

the shape of a drawing x to that of a drawing y, one of

them may be on the left and the other on the right, or one
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may be presented first and the other second.

In the terminology proposed in Dzhafarov (2002, 2006)

and Dzhafarov and Colonius (2006), x and y in such exam-

ples belong to two distinct observation areas (OAs). Thus,

a line segment of length a presented on the left, x = a(left),

is different from a line segment of the same length a pre-

sented on the right, y = a(right), so that no stimulus is ever

compared with “itself.” The pair

x = a(left), x = a(left)

is a single stimulus, and no question can be formulated as

to whether “they” match or not. The question can only be

formulated and answered with respect to

x = a(left), y = b(right),

including the case when a (which can be referred to as the

value of the stimulus in OA “left”) is the same as b (the

value of the stimulus in OA “right”).

This view of stimulus identity (OA+value) immediately

rules out, paradoxical as it may look at first, the reflexivity

property of matches: however the relation “x is matched

by y” is defined, x and y should belong to different OAs,

whence it cannot be the case that x is matched by x. Of

course, one can ask whether it is always true that

x = a(left) is matched by y=a(right),

but this is a different question (to which the answer is nega-

tive — this is not always true), on a par with asking whether

the shape of a drawing is preserved if one turns it upside

down or colors it differently.

The symmetry property is well-defined, but it requires

caution not to be misidentified. If

x = a(left) is matched by y = b(right),

but

x0 = b(left) is matched by y0 = a(right),

this is not a violation of symmetry: the stimulus pair (x, y)

has no obvious relation to the stimulus pair (x0, y0). To

speak about the same two stimuli but taken in another

order, one should ask whether it is true that

y = b(right) is matched by x = a(left)

provided that we know that

x = a(left) is matched by y = b(right).

The answer will depend on our definition of the matching

relation and our matching procedure.

Suppose, e.g., that a robot is instructed, given a seg-

ment in one OA, to draw a 10% larger segment in the

other OA. Suppose we (or the robot) decided to call the

segment drawn in response to a given one a “matching seg-

ment.” Then a segment a(left) is matched by the segment

(1.1a)(right), but the segment (1.1a)(right) is matched by

(1.21a)(left) rather than by a(left). This is an example of a

non-symmetric (even antisymmetric) matching. However,

if the robot is instructed, given a segment in one OA, to

draw a “matching” segment in another OA so that the right

segment is 1.1 times the left one, then the relation of match-

ing is symmetric: a(left) is matched by b(right) if and only if

b(right) is matched by a(left): both statements are equiva-

lent to b = 1.1a. Note that in this last example, if a(left) is

matched by b(right), then b(left) is not matched by a(right).

Transitivity requires an even greater caution not to be

misidentified. In Luce’s example with cups of coffee, let

x = v(1st)1 be the cup of coffee that contains v1 amount

of sugar and is tasted first, and let y = v(2nd)2 be defined

analogously. Suppose that x = v(1st)1 is matched by y =

v(2nd)2 . If the later is matched by some z, then z must

belong to the OA “first,” z = v(1st)3 , as we cannot compare

a second cup of coffee to a second cup of coffee. But then

x = v(1st)1 cannot be compared to z = v(1st)3 , by the same

logic.

Thus, the usual “triadic” form of transitivity is not appli-

cable if one deals with only two OAs. One can meaningfully
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ask, however, whether

x = v(1st)1 is matched by y0 = v(2nd)4

if

x = v(1st)1 is matched by y = v(2nd)2 ,

y = v(2nd)2 is matched by x0 = v(1st)3 ,

x0 = v(1st)3 is matched by y0 = v(2nd)4

(a tetradic form of transitivity). See Dzhafarov and Colo-

nius (2006) for a detailed discussion of the notion of OAs,

and numerous examples of OAs defined by properties other

than spatial locations and temporal order.

With all this in mind, let us consider a comparative sorit-

ical sequence of coffee cups, x1, x2, . . . , xn

, with the respec-

tive amounts of sugar v1, v2, . . . , vn. In the logic of compar-

ative sorites, (x
i

, x
i+1) and (x

i+1, xi+2) should share one

and the same x
i+1, because of which the OAs “first” and

“second” in the sequence must alternate:

x1 = v(1st)1 , x2 = v(2nd)2 , x3 = v(1st)3 , . . . , x
n

= v(2nd)
n

,

the first and the last elements necessarily belonging to dif-

ferent OAs in order to be comparable.

We can easily see now a scenario under which a soritical

sequence would not be possible. Suppose that any coffee

cup x has a single, unique match y, and the matching rela-

tion is symmetric. Then, even if v1 < v2 we never get any-

thing like v2 < v3 < . . . < v
n

. Rather, since the matches

are unique and symmetric, x2 = v(2nd)2 can match both

x1 = v(1st)1 and x3 = v(1st)3 only if v1 = v3. Continuing in

this fashion we get

v1 = v3 = . . . = v
n�1 and v2 = v4 = . . . = v

n

.

As a result

x = v(1st)1 is matched by x
n

= v(2nd)
n

.

Of course, Luce in his 1956 example clearly excluded the

possibility that the matches are unique: he considered it

evident (and encoded this in the notion of semiorders) that

there is a whole range of stimulus values that are indistin-

guishable from a given one. But is one justified to say this

is really the case? We suggest below one is not. (As we

discuss in Conclusion, Luce too came to this view in later

publications.)

2.2. Probabilistic Judgments

The second aspect of soritical situations that escapes

most philosophers (see Hardin, 1988, for an exception) is

that when it comes to discrimination judgments among very

similar stimuli, the judgments are not assigned to stimulus

pairs deterministically. For a psychologist, of course, this

is one of the basic facts about discrimination judgments:

they are fundamentally probabilistic, so the relations like

“x is matched by y” should be computed from probability

distributions rather than directly observed in a trial.

With Luce’s coffee cups, the “evident” departure point is

that if v and w (sugar amounts) are very close, the pair x =

v(1st), y = w(2nd) should be assigned the category “same.”

But this statement is false if this pair is sometimes judged

to be “same” and sometimes “different.” This has nothing to

do with how small |w�v| is, because the response “different”

will be given with some nonzero probability even if w = v

(as any textbook account of signal detection theory would

tell us).

With responses being probabilistic, one cannot even be-

gin formulating the soritical “paradox” in the way it is usu-

ally done. In a sequence of coffee cups x1, x2, . . . , xn

, if the

respective amounts of sugar form an increasing sequence

v1 < v2 < . . . < v
n

, every two stimuli (x
i

, x
j

) will be

judged to be different with some probability. Is there any-

thing noteworthy here when the probabilities for consecu-

tive pairs (x
i

, x
i+1) are compared to that for the first-last

pair (x1, xn

)? Not much, until one uses these probabilities

to define the notion of “indifference,” or matching, and asks

whether this notion applies to (x1, xn

) whenever it applies
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match for x 

w 

w! Pr v 1( )  and w 2( )  are different!
"

#
$

w 

1/2 

match for x 

w! Pr w 2( )  is greater than v 1( )!
"

#
$

x=v(1) 

x=v(1) 

Figure 1: Definition of matches (or Points of Subjective Equality, PSEs) for a stimulus x in two discrimination paradigms: (left)

when the observer has to designate which of the two OAs contains a greater stimulus (in a specified respect), and (right) when the

observer judges whether the two stimuli are the same or different (overall or in a specified respect). In the former case the PSE

is the median of the psychometric function, in the latter case it is the argmin of the psychometric function. The PSEs for y are

defined analogously.

match for x 

x=v(1) 

Figure 2: Definition of the match (PSE) for a fixed stimulus x

in the matching by adjustment paradigm: a measure of central

tendency for the distribution of individual adjustments of y.

The stimuli are shown to have two-dimensional values, as in our

experiments. The PSE for a fixed y is defined analogously.

to all (x
i

, x
i+1).

One finds such definitions in standard psychophysical

theory (Luce & Galanter, 1963; Dzhafarov, 2002, 2006;

Dzhafarov & Colonius, 2006). In the most wide-spread dis-

crimination paradigm the response “they appear the same”

is not even allowed, and the computation of what matches

what is based on the choice between responses

“v(1) (in OA1) is greater than w(2) (in OA2)”

and

“w(2) (in OA2) is greater than v(1) (in OA1)”

(in some respect, such as brightness, or sweetness). Assum-

ing that the probability

� (v, w) = Pr
h
y = w(2) is greater than x = v(1)

i
(1)

is known for all v, w, let us choose some x0 = v(1)0 and pair

it with all possible y = w(2). The value of y that matches
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x0 is referred to as the Point of Subjective Equality (PSE)

for x0, and it is traditionally defined as a value of y0 =

w(2)
0 at which � (v0, w0) = 1/2 (Figure 1, left). Assuming

that � (v0, w) is increasing in w, the matching y0 for x0 is

determined uniquely.

This definition is not logically inevitable (no definition

is), but it seems to be the only one not entirely arbitrary.

One could consider as matches for x0 all y’s within an “un-

certainty interval,” defined, e.g., by 1/4  � (v0, w)  3/4.

But it should be clear with such a definition that the the

endpoints are chosen arbitrarily, and that the declared

matches for x0 will be all different, some less and some

more discriminable from x0.

In another paradigm the pairs of stimuli are judged by

choosing between the categories “same” and “different.”

The probability function (1) is replaced then with

 (v, w) = Pr
h
y = w(2) is different from x = v(1)

i
. (2)

A matching stimulus for any chosen and fixed x0 = v(1)0

then is defined as y0 = w(2)
0 for which  (v0, w0) is smaller

than  (v0, w) for any w 6= w0. Assuming that this mini-

mum is achieved at a single point w0 the matching y0 for

x0 is determined uniquely (Figure 1, right).

Although no counterexamples to the uniqueness of the

minimum are known, one might find it unrealistic that a

function begins increasing as soon as we move away from

w0, however small the change. (This would be an example

of one’s soritical intuition, the reason soritical arguments

are so compelling.) One should consider, however, that the

only alternative to this “unrealisitc” view is that the func-

tion  (v, w) is flat on some interval of (w1, w2) including

w0, and that then the endpoints w1, w2 would exhibit the

same property one finds unrealistic for w0: the function

begins increasing as soon as we move to the right from w2

or to the left from w1.

The paradigm we are primarily concerned with in this

paper is that of matching by adjustment: a stimulus in one

OA is held fixed, and the observer, by means of a control-

ling device, changes the stimulus in another OA until it

appears to match the fixed one. The standard definition of

the PSE for a fixed x0 = v(1)0 in this paradigm is a mea-

sure of central tendency of the distribution formed by the

values of y judged to match x0 in individual trials (Figure

2). The choice of this measure depends on the parameter-

ization of the stimuli (see Dzhafarov & Perry, 2010). The

assumption is that a parameterization exists under which

the distribution has symmetry properties allowing one to

uniquely define its center (as shown in Figure 2).

2.3. No Sorites Property

Our main contention is that with PSEs defined in ac-

cordance with standard psychophysical prescriptions, the

relation “is matched by” allows for no soritical sequences:

given any sequence of OAs ↵1,↵2, . . . ,↵n

, not necessarily

pairwise distinct, there are no stimuli

x1 = v(↵1)
1 , x2 = v(↵2)

2 , . . . , x
n

= v(↵n

)
n

,

such that x
i

is matched by x
i+1 for all i = 1, 2, . . . , n�1, but

x1 is not matched by x
n

. We call this No-Sorites property.

It would be a difficult task if this statement had to be

separately tested for different arrangements of OAs. For-

tunately, the following theorem reduces the investigation

of the (im)possibility of soritical sequences to two simple

special cases.

Theorem (Dzhafarov & Dzhafarov, 2010b). Any soriti-

cal sequence either contains a tetradic soritical subsequence

involving two distinct OAs,

x = a(1), y = b(2), x0 = c(1), y0 = d(2) (3)

(upper panel in Figure 3), or it contains a triadic soritical

subsequence involving three distinct OAs,

x = a(1), y = b(2), z = c(3) (4)

(lower panel in Figure 3).
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a

b

c
d

c
a

b

OA1$
OA2$

OA1$
OA2$

OA3$

Figure 3: Soritical sequences whose exclusion guarantees the

no-sorites property. The top panel: a bi-areal tetradic soritical

sequence in which a in OA1 is matched by b in OA2 that is

matched by c in OA1 that is matched by d in OA2, but a is not

matched by d. The bottom panel: a tri-areal triadic soritical

sequence in which a in OA1 is matched by b in OA2 that is

matched by c in OA3, but a is not matched by c.

It follows that experimental work can be confined to

demonstrating that using standard psychophysical defini-

tions of PSEs one cannot obtain soritical sequences of the

form (3) or of the form (4).

3. MATCHING BY ADJUSTMENT

3.1. Notation

From here on we only consider stimulus sequences involv-

ing either two or three OAs, and this allows us to simplify

notation. We will use letters x, y, and z to designate stimuli

in OA1, OA2, OA3, respectively, and we will conveniently

confuse stimuli and stimulus values. Thus, x is a stimulus

in OA1 whose value is also denoted by x; and analogously

for y and z. We will tacitly assume that the values of x, y, z

are real numbers or vectors of real numbers (in the experi-

ments reported below x, y, z are two-component vectors).

x1" x2"

y1"
y2"

trial"1" trial"2" trial"3" trial"4" trial"5" Trial"6"

OA1"

OA2"

x"

y"

x3"

y3"

Figure 4: A temporal profile of the adjustment paradigm for

two OAs. Filled circles represent stimulus values, schematically

shown as if they were unidimensional (they need not). A series

of adjustments consists of several consecutive trials. In trials

1, 3, 5, . . . stimulus y remains fixed (at its previously established

value, which, in trial 1, is the initial value), while x at the be-

ginning of the trial is randomly offset from its previous position,

as shown by the vertical dotted line, and at the end of the trial,

is adjusted by the participant to a position where x appears to

match y. In trials 2, 4, 6, . . . the procedure repeats with the x

and y exchanging their roles.

We denote by F
yx

(x) the y-PSE function for x, i.e., the

y stimulus that matches x. In the matching by adjustment

procedure, F
yx

(x) is an appropriately defined center of the

distribution of individual adjustments of y to match x. The

PSE functions F
yz

(z), F
xy

(y), F
xz

(z), etc. are defined and

interpreted analogously.

3.2. Bi-areal “Ping-Pong” Matching

We need now to translate the investigation of the sorit-

ical sequences depicted in Figure 3 into experimental pro-

cedures using matching by adjustment.

Consider first bi-areal tetradic sequences. The No-Sorites

property means that if one forms a chain-matched tetradic
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Figure 5: Histograms of the first-order differences (�’s) for a participant in the bi-areal ping-pong matching experiment. The

stimulus values x and y here are the adjustable (by means of moving a trackball) positions of the non-central dots in the two circles

(left). The positions are represented by horizontal and vertical Cartesian coordinates (measured in screen pixels, 1 px ⇡ 62 sec arc)

with respect to fixed central dots. Each panel shows the mean and median of the corresponding D (in sec arc), with the p-values

for the hypotheses that the population mean and median equal zero, as well as the q2 test and the p-value for the hypothesis that

the histogram is symmetric about zero. The procedural and statistical details are the same as in the experiments reported below.

From Dzhafarov and Perry (2010), with permission.
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Figure 6: Histograms of the first-order differences (�’s) for a participant in the bi-areal ping-pong matching of floral shapes,

examples of which are shown in the left panel. A3 and A5 are amplitudes in the formula for the floral shapes in polar coordinates

(r, ✓): r = R+A3 cos 3✓+A5 cos 5✓, with |A3|+ |A5|  R = const. The rest is as in the previous figure. From Dzhafarov and Perry

(2010), with permission.



10 Dzhafarov and Perry

-3 -2 -1 0 1 2 3 
0 

250 

500 

750 

1,000 

1,250 
Mean = 0’’ 

N = 2,475 
Median = 0’’ 

-3 -2 -1 0 1 2 3 0 

250 

500 

750 

1,000 

1,250 
Mean = 0’’ 

N = 2,475 
Median = 0’’ 

co
un

t 

-3 -2 -1 0 1 2 3 0 

100 

200 

300 

400 

500 

Mean = 0’’ 

N = 990 
Median = 0’’ 

-3 -2 -1 0 1 2 3 0 

100 

200 

300 

400 

500 

Mean = 0.6’’ 

N = 990 
Median = 0’’ 

LEFT LINE 
HORIZONTAL 

RIGHT LINE 
VERTICAL 

co
un

t 

LEFT LINE 
HORIZONTAL 

RIGHT LINE 
HORIZONTAL 

Figure 7: Histograms of the �’s for bi-areal ping-pong matching

of line segments’ lengths. The upper panel shows the result of

an experiment with two horizontal lines, on the left and on the

right; in the lower panel the results are for a horizontal line

on the left and a vertical line on the right. The abscissae are

calibrated in screen pixels (1 px ⇡ 55 sec arc). The p-values

for the population mean and median being zero are very large,

and the symmetry is obvious. From Dzhafarov (2006), with

permission.

sequence

x

#

y = F
yx

(x)

#

x0 = F
xy

(F
yx

(x))

#

y0 = F
yx

(F
xy

(F
yx

(x)))

(5)

then x is matched by y0, that is,

F
yx

(F
xy

(F
yx

(x))) = F
yx

(x) . (6)

One can, with the same two OAs, begin the tetradic se-

quence with y, and then the No-Sorites property implies

F
xy

(F
yx

(F
xy

(y))) = F
xy

(y) (7)

If, with no loss of generality, one confines one’s atten-

tion to only those x-stimuli that can match some y-stimuli,

and vice versa, i.e., if one excludes the stimuli that cannot

be presented in the form F
xy

(y) or F
yx

(x), the No-Sorites

conditions (6) and (7) are reduced to the symmetry state-

ments: x is matched by y if and only if y is matched by x.

In terms of the PSE functions,

F
yx

(F
xy

(y)) = y,

F
xy

(F
yx

(x)) = x.
(8)

An ideal use of matching by adjustment to study bi-areal

tetradic sequences would therefore have been

1. to obtain multiple adjustments of y to some x0 (about

which we know that it can match some y), compute

the center F
yx

(x0) of the distribution of all these y’s,

and declare F
yx

(x0) the match for x0; and then

2. to obtain multiple adjustments of x to F
yx

(x0), to

compute the center F
xy

(F
yx

(x0)) of the distribution

of all these x’s and declare it the match for y1.

The analysis then would consist in determining whether x0

is the same stimulus as F
xy

(F
yx

(x0)): if they are not, we

have a soritical sequence (and a violation of symmetry), if

they are, we do not.

This procedure, however, is not feasible: the computa-

tion of the matching stimuli F
yx

(x0) and F
xy

(F
yx

(x0)) in

it would have to be separated by considerable intervals to

collect the adjustments needed to compute them. Any dif-

ference between x0 and F
xy

(F
yx

(x0)) obtained in such an

experiment could then be attributed to the participant’s

changing perceptual state.

A realistic procedure was proposed in Dzhafarov (2006)

and dubbed “ping-pong” matching. In essence, it replaces

a tetradic sequence (5) with a long sequence

x0, y1, x1, y2, x2, . . . , ym, x
m

, y
m+1, xm+1, . . .

in which each element is a single adjustment made in the

corresponding trial to match the previous element. Thus,



Perceptual Matching and Sorites 11

y1 is the true but unknown to us match for x0 plus some

adjustment error,

y1 = F
yx

(x0)| {z }
true match for x0

+ �y1|{z}
adjustment error

.

Similarly,

x1 = F
xy

(F
yx

(x0) + �y1)| {z }
=F

xy

(y1), true match for y1

+ �x1|{z}
adjustment error

,

y2 = F
yx

(F
xy

(F
yx

(x0) + �y1) + �x1)| {z }
=F

yx

(x1), true match for x1

+ �y2|{z}
adjustment error

,

and so on.

To prevent the participant from simply leaving the val-

ues of stimuli from some trial on untouched (because they

already “all match each other”), in the beginning of each

trial the stimulus to be adjusted is abruptly offset from its

current value to some randomly chosen value, as shown in

Figure 4.

Typically, the values of x
i

, y
i+1, xi+1, yi+2 would occupy

a relatively small region around the initial matches (x1, y1),

and within this region it is reasonable to assume that the

PSE functions F
yx

and F
xy

can be effectively linearized

(i.e., they are differentiable and the higher-order terms are

negligibly small). The adjustment errors are assumed to be

symmetric about zero (or, if they are multicomponent vec-

tors, this is assumed about each component). With these

assumptions in mind, we compute first-order differences

�x
i

= x
i

� x
i�1,�y

i

= y
i

� y
i�1

for i = 2, 3, . . ..

It can be shown now that if (8) holds, then the first or-

der differences �x1,�x2, . . . are stochastically independent

random variables (or vectors) identically distributed about

zero (componentwise); the same holds for the first order dif-

ferences �y1,�y2, . . .. For details and proofs see Dzhafarov

(2006) and Dzhafarov and Perry (2010). We do not reca-

pitulate them here because they are essentially the same

as in the detailed analysis presented below for the tri-areal

matching.

Typical results of one experiment conducted using the

procedure just described are presented in Figure 5. This

experiment is a bi-areal version of the the tri-areal match-

ing experiment described below. Under the hypothesis of

No-Sorites, represented by the symmetry statement (8),

the distributions of the �x and �y (each of which is a

two-component vector) should be componentwise symmet-

ric about zero. We see this prediction to be well corrobo-

rated by the three statistical tests reported.

In another experiment from Dzhafarov and Perry (2010),

the participants were asked to move a trackball to adjust

certain parameters of a floral shape on the left or on the

right until it matched a fixed floral shape shown on the right

or on the left, respectively (Figure 6, left panel). Typical

results are shown in the right panel of Figure 6, in a very

good agreement with the No-Sorites property.

In yet another experiment, described in Dzhafarov

(2006), the participants adjusted the length of one line seg-

ment until it matched the length of a fixed line segment.

Typical results are shown in Figure 7. Again, there is no

doubt that the distributions are almost perfectly symmet-

rical, as they should be in accordance with the No-Sorites

property.

3.3. Tri-Areal “Ping-Pong” Matching

Consider now the matching experiment whose temporal

profile is depicted in Figure 8,

z0, x1, y1, z1, x2, y2, z2, . . . , xm

, y
m

, z
m

, . . . (9)

Although the stimuli are shown as unidimensional, in our

experiments x, y, z are two-component vectors, and this will

be assumed throughout,

x =
�
x1, x2

�
, y =

�
y1, y2

�
, z =

�
z1, z2

�
,
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Figure 8: A temporal profile of the adjustment paradigm for

three OAs. In trials 1, 4, 7, . . . stimuli y and z remain fixed (at

their previously established values, which, in trial 1, is the initial

value), while x at the beginning of the trial is randomly offset

from its previous position, as shown by the vertical dotted line,

and at the end of the trial, is adjusted by the participant to

a position where x appears to match z. This position is re-

ferred to as “balance point.” In trials 2, 5, 8, . . . x and z remains

fixed (at their initial or previously established values), and y is

first randomly offset from its previous position (dotted vertical

line) and then adjusted to the position (balance point) that ap-

pears to match x. In trials 3, 6, 9, . . . x and y remains fixed,

and z is adjusted to match y. The balance points are numbered

x1, x2, . . . in OA1, y1, y2, . . . in OA2, and z1, z2, . . . in OA3. Note

the scheme: each stimulus, x, y, or z, is adjusted to match a par-

ticular stimulus (in our example, z, x, and y, respectively), and

the next adjustment is made in the remaining stimulus (here, y,

z, or x, respectively).

so that x
m

means
�
x1
m

, x2
m

�
, etc. (To prevent notational

confusion: OAs in the previous sections were designated by

superscripts in parentheses, as in x = v(1), whereas now

the three OAs are indicated by use of x, y, and z, and

their coordinates are designated by superscripts without

parentheses, as in x1.)

The No-Sorites property means here that, for any x, y, z,

F
yx

(F
xz

(z)) = F
yz

(z) ,

F
xz

(F
zy

(y)) = F
xy

(y) ,

F
zy

(F
yx

(x)) = F
zx

(x) .

(10)

In view of the symmetry property that we consider to be

empirically corroborated in the bi-areal matching experi-

ments (see Section 3.2), this is equivalent to

F
zy

(F
yx

(F
xz

(z))) = z,

F
yx

(F
xz

(F
zy

(y))) = y,

F
xz

(F
zy

(F
yx

(x))) = x.

(11)

Our task is to test this hypothesis against a suitably

chosen alternative. This cannot be a generic rejection

of (11), which would be the statement that, for some z,

F
zy

(F
yx

(F
xz

(z))) 6= z, allowing for an arbitrary deviation

pattern from the equality. We need a more specific alter-

native: assuming that all the matches occur in a relatively

small region V of (x, y, z), our alternative model states that

F
zy

(F
yx

(F
xz

(z))) = z + s
z

(z) ,

F
yx

(F
xz

(F
zy

(y))) = y + s
y

(y) ,

F
xz

(F
zy

(F
yx

(x))) = x+ s
x

(x) ,

(12)

where in s
z

(z) =
�
s1
z

(z) , s2
z

(z)
�
, s

y

(y) =
�
s1
y

(y) , s2
y

(y)
�
,

and s
x

(x) =
�
s1
x

(x) , s2
x

(x)
�

each of the components either

exceeds some positive value or is below some negative value

(i.e., within the region in question it preserves its sign and

does not get arbitrarily small in absolute value) .

What follows is a simplified (in a non-essential way,

merely to avoid cumbersome calculus) version of the math-

ematical analysis presented in Dzhafarov and Perry (2010)

for two observation areas. The simplification consists in as-

suming that in the small region V just mentioned the PSE

functions can be linearized. That is, we can put

F
xz

(z) = a
xz

z + ✏
xz

,

F
yx

(x) = a
yx

x+ ✏
yx

,

F
zy

(y) = a
zy

y + ✏
zy

,

(13)

with all higher-order terms dropped. Note that a
xz

, a
yx

, a
zy

here are 2⇥2 matrices, and all other terms are 2-component
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vectors (columns). By simple algebra, (11) then transforms

into

a
xz

a
zy

a
yx

= I =

2

4 1 0

0 1

3

5 ,

a
zy

a
yx

✏
xz

+ a
zy

✏
yx

+ ✏
zy

= O =

2

4 0

0

3

5 .

(14)

We will call this the null-model, later to be translated

into statistical null-hypotheses. The alternative model (12)

states that, within the region V ,

(a
zy

a
yx

a
xz

) z + (a
zy

a
yx

✏
xz

+ a
zy

✏
yx

+ ✏
zy

)� z =

2

4 s1
z

(z)

s2
z

(z)

3

5 ,

(a
yx

a
xz

a
zy

) y + (a
yx

a
xz

✏
zy

+ a
yx

✏
xz

+ ✏
yx

)� y =

2

4 s1
y

(y)

s2
y

(y)

3

5 ,

(a
xz

a
zy

a
yx

)x+ (a
xz

a
zy

✏
yx

+ a
xz

✏
zy

+ ✏
xz

)� x =

2

4 s1
x

(x)

s2
x

(x)

3

5 ,

(15)

with each of the components on the right-hand side falling

either above a positive value or below a negative one.

Our next assumption is that adjustments in the region

V are made with errors normally distributed about zero.

With reference to Figure 8, when x (or y, or z) is adjusted

to match z (respectively, x or y) the results are

x = (a
xz

z + ✏
xz

) + �x,

y = (a
yx

x+ ✏
yx

) + �y,

z = (a
zy

z + ✏
zy

) + �z,

(16)

where �x =
�
�x1, �x2

�
and �x1 and �x2 are random vari-

ables (generally stochastically interdependent) normally

distributed about zero; analogously for �y =
�
�y1, �y2

�
and

�z =
�
�z1, �z2

�
. The three random vectors �x, �y, �z are as-

sumed to be stochastically independent, with distributions

that, at least within the small region V , can be viewed as

fixed (i.e., not changing with, respectively, x, y, and z).

It is convenient to group the trials into triples, as shown

in Figure 8, denoting the matching adjustments (balance

points) achieved in trials 1,2,3 by x1, y1, z1, those achieved

in trials 4,5,6 by x2, y2, z2, etc., so that x
m

, y
m

, z
m

are the

matching adjustments achieved in trials 3m�2, 3m�1, 3m,

respectively (m = 1, 2, . . .). With no loss of generality, put

the initial value z0 in OA3 equal to zero (in both compo-

nents).

Since x1 in Figure 8 is a match for z0 = 0, we have

x1 = ✏
xz|{z}

constant

+ �x1|{z}
error

.

Next, y1 is chosen as a match for x1,

y1 = a
yx

x1 + ✏
yx

+ �y1 = a
yx

✏
xz

+ ✏
yx| {z }

constant

+ a
yx

�x1 + �y1| {z }
error

,

and then z1is chosen as a match for y1,

z1 = a
zy

y1 + ✏
zy

+ �z1

= a
zy

a
yx

✏
xz

+ a
zy

✏
yx

+ ✏
zy| {z }

constant

+ a
zy

a
yx

�x1 + a
zy

�y1 + �z1| {z }
error

.

Continuing in this fashion we get (as can be formally es-

tablished by induction),

x
m

= a
xz

⇣P
m�2
i=0 (a

xz

a
zy

a
yx

)
i

⌘

⇥ (a
zy

a
yx

✏
xz

+ a
zy

✏
yx

+ ✏
zy

) + ✏
xz

+
P

m�1
i=1

0

BBB@

(a
xz

a
zy

a
yx

)
m�i �x

i

+a
xz

a
zy

(a
yx

a
xz

a
zy

)
m�i�1 �y

i

+a
xz

(a
zy

a
yx

a
xz

)
m�i�1 �z

i

1

CCCA
+ �x

m

,

y
m

= a
yx

a
xz

⇣P
m�2
i=0 (a

zy

a
yx

a
xz

)
i

⌘

⇥ (a
zy

a
yx

✏
xz

+ a
zy

✏
yx

+ ✏
zy

) + a
yx

✏
xz

+ ✏
yx

+
P

m�1
i=1

0

BBB@

a
yx

(a
xz

a
zy

a
yx

)
m�i �x

i

+(a
yx

a
xz

a
zy

)
m�i �y

i

+a
yx

a
xz

(a
zy

a
yx

a
xz

)
m�i�1 �z

i

1

CCCA

+a
yx

�x
m

+ �y
m

,

z
m

=
⇣P

m�1
i=0 (a

zy

a
yx

a
xz

)
i

⌘
(a

zy

a
yx

✏
xz

+ a
zy

✏
yx

+ ✏
zy

)

+
P

m

i=1

0

BBB@

a
zy

a
yx

(a
xz

a
zy

a
yx

)
m�i �x

i

+a
zy

(a
yx

a
xz

a
zy

)
m�i �y

i

+(a
zy

a
yx

a
xz

)
m�i �z

i

1

CCCA
.

(17)
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Now, in the null model (14), this transforms into

x
m

= ✏
xz

+ �x
m

+
P

m�1
i=1 (�x

i

+ a
xz

a
zy

�y
i

+ a
xz

�z
i

) ,

y
m

= (a
yx

✏
xz

+ ✏
yx

) + (a
yx

�x
m

+ �y
m

)

+
P

m�1
i=1 (a

yx

�x
i

+ �y
i

+ a
yx

a
xz

�z
i

) ,

z
m

=
P

m

i=1 (azyayx�xi

+ a
zy

�y
i

+ �z
i

) .

(18)

We are interested in the first-order differences, or “deltas,”

beginning with m = 2:

�x
m

= x
m

�x
m�1, �y

m

= y
m

�y
m�1, �z

m

= z
m

�z
m�1.

(�z
m

is also defined for m = 1, but we do not consider this

for uniformity.) In the null model, it follows from (18) that

�x
m

= a
xz

a
zy

�y
m�1 + a

xz

�z
m�1 + �x

m

,

�y
m

= a
yx

a
xz

�z
m�1 + a

yx

�x
m

+ �y
m

,

�z
m

= a
zy

a
yx

�x
m

+ a
zy

�y
m

+ �z
m

.

(19)

It is clear that in the null model �x2,�x3,�x4, . . . are

independent random variables identically normally dis-

tributed about zero, and that so are �y2,�y3,�y4, . . . and

�z2,�z3,�z4, . . .. For any m, however, the six random

variables

�x1
m

,�x2
m

,�y1
m

,�y2
m

,�z1
m

,�z2
m

are generally interdependent stochastically.

In the alternative model, it follows from (17) and (15)

that

�x
m

=

2

4 s1
x

(x
m�1)

s2
x

(x
m�1)

3

5+ �x⇤
m

,

�y
m

=

2

4 s1
y

(y
m�1)

s2
y

(y
m�1)

3

5+ �y⇤
m

,

�z
m

=

2

4 s1
z

(z
m�1)

s2
z

(z
m�1)

3

5+ �z⇤,
m

(20)

where

�x⇤
m

= LC1

0

BBBBBB@

�x1, �y1, �z1,

. . . ,

�x
m�1, �ym�1, �zm�1,

�x
m

1

CCCCCCA
,

�y⇤
m

= LC2

0

BBBBBB@

�x1, �y1, �z1,

. . . ,

�x
m�1, �ym�1, �zm�1,

�x
m

, �y
m

1

CCCCCCA
,

�z⇤
m

= LC3

0

BBB@

�x1, �y1, �z1,

. . . ,

�x
m

, �y
m

, �z
m

1

CCCA
,

with LC standing for a linear combination. The cumber-

some explicit expressions need not be presented, as the only

relevant property is that �x⇤
m

, �y⇤
m

, �z⇤
m

are random vectors

with components normally distributed about zero. That

is, each component of each of the �x
m

,�y
m

,�z
m

is a ran-

dom variable normally distributed about a center above

some positive value or below some negative value.

Unlike in the null model, the random variables

�x2,�x3,�x4, . . . in the alternative model generally are

not stochastically independent, and the same is true for

�y2,�y3,�y4, . . . and �z2,�z3,�z4, . . ..

In Section 4.3 we show how the null and the alternative

hypotheses translate into statistically testable propositions.

4. EXPERIMENTAL EVIDENCE

4.1. Participants

The participants were three Purdue university students,

two females and one male, around 24 years of age, right-

handed, with normal or corrected to normal vision. One of

the female participants was a coauthor of this study (LP).
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4.2. Stimuli and Procedure

The stimuli were three adjacent circles whose centers con-

tained dots forming an equilateral triangle (Figure 9). Each

circle also contained an additional, non-central dot whose

position was manipulated as described below. Taking the

position of the fixed central dot in each of the circles 1, 2,

and 3 for (0, 0), denote the positions of the non-central dots

in them (x1, x2), (y1, y2), and (z1, z2), respectively. In each

trial the participant adjusted the coordinates of the non-

central dot within one of the circles by moving a trackball

with her/his dominant (right) hand. The horizontal and

vertical movements of the trackball controlled the horizon-

tal (x1, y1, or z1) and vertical (x2, y2, or z2) coordinates of

the dots, respectively.

Prior to trial 1, all three non-central dots were at the

initial position (27 px, 16 px). There were two possible or-

ders of adjustments, clockwise and counterclockwise, used

in separate sessions. In the counterclockwise sessions, the

position of the non-central dot was first adjusted in Circle

1 to match that in Circle 3, then in Circle 2 to match Circle

3, then in Circle 3 to match Circle 2, then again in Circle 1

to match Circle 3, and so on. In the clockwise sessions the

position of the non-central dot was first adjusted in Circle

1 to match that in Circle 2, then in Circle 3 to match Circle

1, then in Circle 2 to match Circle 3, and then this cycle

repeated many times.

In each trial where the position of the non-central dot in

Circle i was adjusted to match that in Circle j, the trial

began by the dot position in Circle i randomly changing in

accordance with Figure 10. The participant then adjusted

this position and indicated that a match was achieved by

clicking a button on the trackball device. This position

was recorded and referred to as a “balance point.” It re-

mained fixed for the next two trials. The participants were

given unrestricted time to achieve a match in each trial, the

successive trials being separated by 500 ms intervals.

Circle 1 
Circle 2 

Circle 3 

Figure 9: Stimuli used in the tri-areal experiment. The stimuli

were presented on a flat-screen monitor, at a distance of 90 cm

from a chin rest supporting the participant’s head. At this dis-

tance 1 pixel (px) subtends 62 sec arc. The stimuli were low lu-

minance, grayish-white circles and dots on a black background,

viewed in darkness. The thickness of the circles’ circumference

and the diameters of the dots were 5 px, the circles’ radii mea-

sured 70 px, and the distance between the centers of any two

circles was 150 px. In each trial we recorded the adjustable po-

sition (i.e., the horizontal and vertical Cartesian coordinates) of

the non-central dot in one of the circles with respect to the fixed

central dot. The position of the dot in the first trial for all three

circles was (27 px, 16 px).

All experimental sessions started with 21 practice tri-

als (7 matching adjustments in each circle), which were

not recorded. After the practice trials, a recorded counter-

clockwise or clockwise session was conducted, consisting of

219 trials (73 match adjustments in each circle). Midway

through the main session the participant was instructed to

take a short break before completing the second half of the

trials. After this break, the experiment resumed with the

dot in the position established in the trial previous to the

break.

In total, ten sessions were completed for each of the clock-

wise and counterclockwise orders of matching, with the or-
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Figure 10: A detail of the adjustment procedure. The picture

shows the first quadrant of the circle during a trial in which

the position of the non-central dot in this circle was adjusted

to match the constant position in another circle. Denoting the

position of the dot prior to the trial by (r,�), in polar coordi-

nates, the trial began by abruptly changing this position to one

randomly chosen according to the uniform distribution over the

rectangle [✓�p/18, ✓+p/18]⇥ [r�0.1 ·r, r+0.1 ·r] (the shaded

box around the dot).

ders alternating. This resulted in 730 balance points, and

720 first-order differences for each of the two orders.

4.3. Statistical Hypotheses

The two models of Section 3, the null and the alternative

ones, were translated into three pairs of opposing statistical

hypotheses. The range of possible values for each of the

deltas

�x1
m

,�x2
m

,�y1
m

,�y2
m

,�z1
m

,�z2
m

were subdivided into the following intervals:

interval � 9 : D < �8 px

interval � 8 : � = �8 px

. . . . . .

interval � 1 : D = �1 px

interval 0 : D = 0 px

interval + 1 : D = 1 px

. . . . . .

interval + 8 : D = 8 px

interval + 9 : D > 8 px.

The intervals are all of 1 pixel width, with 1 px ⇡ 1 min arc.

The interval width of ±8 pixels was chosen as a reasonable

idea of a small range, as well as for the comparability with

the results in Dzhafarov and Perry (2010). The occurrences

above and below this range were infrequent and sparsely

distributed.

The hypotheses are as follows.

(H10): The histogram of D’s is symmetric around zero,

versus the alternate hypothesis, H1A, that this is not so.

We used the q2 test statistic

9X

i=1

[#(D 2 interval i)�#(D 2 interval � i)] 2

#(D 2 interval i) + #(D 2 interval � i)
, (21)

where # designates number of occurrences. With the as-

sumptions we made about adjustment errors, and given

that this statistic is computed from 720 data points per con-

dition, one can easily check that under the null hypothesis

H10 the test statistic has the q2-distribution with df = 9.

The distribution under H1A is not known due to the lack

of independence in successive realizations of the D’s, but

for approximate power computations one might assume the

noncentral q2-distribution with df = 9.

(H20): The population median of D is zero, i.e.,

Pr[D > 0] +
Pr[D = 0]

2
= 1/2,

versus the alternate hypothesis, H2A, that this probability

is not 1/2. We used the q2 test statistic
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[(#(D > 0)�#(D < 0)] 2

#(all D)
. (22)

The distributions of this test statistic under H20and H2Aare

the same as above, but with df = 1.

(H30): The expected value of D is zero, versus the al-

ternate hypothesis, H3A, that it is not zero. We used the

standard t-statistic

Mean �

Standard Error of �
. (23)

Given that this statistic is based on 720 data points in each

condition, under H30 it is standard normally distributed,

and under H3A (assuming the unknown stochastic inter-

dependence in successive realizations of the D’s can be ig-

nored), it is normally distributed with some nonzero mean

and unit variance.

4.4. Results

The findings are presented in Figures 11-22.

Each figure presents the histograms of first-order differ-

ences (D’s) for the three circles. The bins of the histograms

are one pixel wide throughout (⇡1 min arc). The insets

show the time series of the matching adjustments from

which the D’s are computed. The abscissa of the inset

shows successive trials in which adjustments are made. For

Circle 1 these are trials 1, 4, 7, . . .. For Circle 2 and Circle

3 it depends on the adjustment order: in the clockwise con-

dition, for Circle 2 the trials are 3, 6, 9, . . ., and for Circle

3 they are 2, 5, 8, . . .; in the counterclockwise condition

it is the other way around. The ordinate axis of the inset

corresponds to the abscissa of the histogram.

With three circles, two adjustment orders (clockwise and

counterclockwise), and two Cartesian coordinates, there are

a total of twelve conditions for each participant. Each panel

presents the observed mean, median and the results of the
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Figure 11: Histograms of the first-order differences (D’s) for the

clockwise order of matching, horizontal coordinate, participant

LP. The insets show the time series of the matching adjustments

from which the D’s were computed. Each panel shows the mean

and median of the corresponding D (in sec arc), with the p-

values for the hypotheses that the population mean and median

equal zero, as well as the q2(df = 9) value and the p-value for

the symmetry test.
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Figure 12: Histograms of D’s for the counterclockwise order

of matching, horizontal coordinate, participant LP. The rest is

same as in Figure 11.
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Figure 13: Histograms of D’s for the clockwise order of match-

ing, vertical coordinate, participant LP. The rest is same as in

Figure 11.
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Figure 14: Histograms of D’s for the counterclockwise order of

matching, vertical coordinate, participant LP. The rest is same

as in Figure 11.

three tests described in Section 4.3 performed on the data

for the corresponding condition.

Circle 1: Clockwise 

Horizontal �ŽŽƌĚŝŶĂƚĞ 
N= 720  

Mean= 15” 

p= .07 

Median= 0” 

p= .07 

Sym χ2 (9)= 14.36 

p= .11 

B
a
la
n
ce
 P
o
in
t 
(p
x
) 

Trial 

Circle 2: Clockwise 

Horizontal �ŽŽƌĚŝŶĂƚĞ 
N= 720 

Mean= 13” 

p= .13 

Median= 0” 

p= .15 

Sym χ2 (9)= 4.83  

p= .85 

B
a
la
n
ce
 P
o
in
t 
(p
x
) 

Circle 3: Clockwise 

Horizontal �ŽŽƌĚŝŶĂƚĞ 
N= 720 

Mean= 14” 

p= .10 

Median= 0” 

p= .05 

Sym χ2 (9)= 16.03  

p= .07 

Trial 

B
a
la
n
ce
 P
o
in
t 
(p
x
) 

Trial 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

Figure 15: Histograms of D’s for the clockwise order of match-

ing, horizontal coordinate, participant P1. The rest is same as

in Figure 11.
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Figure 16: Histograms of D’s for the counterclockwise order of

matching, horizontal coordinate, participant P1. The rest is

same as in Figure 11.

4.5. Discussion

Let us first inspect individual tests. The observed means

in all cases are very small: most of them are just a few

sec arc. For comparison, one pixel on the screen subtends
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Figure 17: Histograms of D’s for the clockwise order of match-

ing, vertical coordinate, participant P1. The rest is same as in

Figure 11.
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Figure 18: Histograms of D’s for the counterclockwise order of

matching, vertical coordinate, participant P1. The rest is same

as in Figure 11.

about 1 min arc, which is an average value for minimum

separabile in normal vision. So the values well below 1 min

arc may be difficult to interpret. No mean is statistically

significant at a = 0.05.

The hypothesis that the � ’s are symmetrically dis-
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Figure 19: Histograms of D’s for the clockwise order of match-

ing, horizontal coordinate, participant P2. The rest is same as

in Figure 11.
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Figure 20: Histograms of D’s for the counterclockwise order of

matching, horizontal coordinate, participant P2. The rest is

same as in Figure 11.

tributed about zero is also retained in all cases at a = 0.05.

All observed medians are zero, but in two cases (Circle

3 in Figures 15 and 16) the hypothesis that the population

median is zero produces 0.01 < p  0.05. These small p-

values, however, should be expected by pure chance under
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Figure 21: Histograms of D’s for the clockwise order of match-

ing, vertical coordinate participant P2. The rest is same as in

Figure 11.
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Figure 22: Histograms of D’s for the counterclockwise order of

matching, vertical coordinate, participant P2. The rest is same

as in Figure 11.

multiple testing (the p-values are uniformly distributed un-

der a correct null hypothesis). Equivalently, the rejection

of the null hypothesis at ↵ = 0.05 in these two cases can

be safely atttributed to the high overall Type I error rate.

The Type I error rate is based on multiple statistical

Significant per test Overall Type I error Rejections/ out of

a = 0.01 0.06� 0.70 0/108 (p = 1)

a = 0.05 0.26� 1.00 2/108 (p ⇡ 1)

Table I: Summary of the results presented in Figures 11-22.

Overall Type I error is calculated by (24).

tests whose test statistics are not all stochastically inde-

pendent. In fact, all 18 statistical tests performed on a

given participant for a given matching order (3 tests ⇥ 3

OAs ⇥ 2 coordinates) should be considered interdependent

in some unknown way. The test results for six applications

of these 18 tests to different participants ⇥ matching orders

are treated as stochastically independent.

This leads us to the following formula for the overall Type

I error at any chosen alpha level per test (in our case, 0.01

or 0.05):

1� (1� ↵)6  Pr [Type I error]  1� (1� ↵⇥ 18)6. (24)

The computations are summarized in Table I.

At the significance level 0.05 the overall Type I error

is between 0.26 – 1.00, and there are only two observed

rejections out of 108 tests. The probability of two or more

rejections at the given range of Type I errors is almost 1.

At the a = 0.01 there are no observed rejections out of 108

tests (the overall p-value therefore is precisely 1).

The alternative model tells us that the �’s in (20)

are normally distributed about the corresponding s-

components, but we don’t know their standard deviation

values or stochastic interdependence pattern. To crudely

evaluate the power of our tests, we assume that successive

realizations of the �’s can be treated as if they were inde-

pendent (see Section 4.3), and that the population stan-

dard deviations are close to those empirically observed.

The distributions of the test statistics under our alterna-

tive hypotheses H1
A

, H2
A

, H3
A

then can be approximated

by noncentral counterparts of the two �2-distributions and
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Figure 23: Power curves for the three tests reported in Figures 11-22. Effect size is one of the s

i
· (·) in (20), chosen in accordance

with the OA and matching order, and � is population standard deviaiton.

t-distribution, with the same degrees of freedom as in the

null hypotheses.

The computations are presented in Figure 23. As the

observed standard deviations all were well between 1 and

4 min arc values, the power was computed for population

sigmas in the same range. We see that in all cases the

effect size values approaching minimum separabile (in our

case, 1 px) would be detected with almost 100% percent

assurance. For smaller effect sizes, assuming they can be

given plausible interpretation, the power of the t-test is the

highest and the power of the �2-test for symmetry is the

lowest; but even at one-half of a pixel size, the detection

probability by the least powerful of the three tests is more

than 50%.

5. CONCLUSION

It is not possible to definitively prove that soritical se-

quences do not exist. One can always entertain the possi-

bility that s
z

(z) , s
y

(y) , s
x

(x) in (12) and (15) are nonzero,

but they are so small or change sign so often that we can-

not detect them even with sample sizes as large as in our

experiments. Our claim, however, is not that soritical se-

quences cannot exist in principle, but rather that we do not

have any empirical evidence that they exist.

The widespread belief in the existence and even ubiq-

uity of soritical sequences, so often declared to be “well-

known” and “evident,” is not grounded in empirical knowl-

edge. Rather it is a metaphysical belief of enormous psy-

chological persuasiveness: big and clumsy systems like our-

selves should not be able to detect microscopic differences,

while, of course, microscopic changes can be accumulated
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into arbitrarily large and hence perfectly detectable ones.

This metaphysical belief crumbles under psychophysical

scrutiny. Any pair of similar stimuli, including identical

ones, leads to judgements “same” and “different” with some

probabilities. One cannot therefore simply observe that

a stimulus on the right matches the stimulus on the left.

One has to compute this matching relation from the prob-

ability distributions of judgements or adjustments. When

these computations are done properly (which prominently

includes not overlooking that stimuli being compared have

to belong to distinct OAs, such as left and right, constitut-

ing part of their identity), soritical arguments loose their

persuasiveness. And then it comes as no surprise if we in

fact find no soritical sequences empirically.

Although this paper is about matching by adjustment,

the other two main psychophysical paradigms mentioned

in Section 2.2 (Figure 1) provide additional support. In

the pairwise comparison paradigm with “greater than” ver-

sus “less than” judgments, the computations of matches is

based on the probabilities (1). With two fixed OAs, in our

simplified notation,

� (x, y) = Pr [y is greater than x] .

It is assumed, in agreement with all available experiments,

that the psychometric function y 7! � (x0, y), for a fixed

x0, continuously increases with y from a value below 1/2 to

a value above 1/2. Then the match y0 for x0 is uniquely

defined by the condition � (x0, y0) = 1/2. By the same

argument, for the continuously decreasing function x 7!

� (x, y0), the match x0
0 for y0 is uniquely defined by the

same condition � (x0
0, y0) = 1/2. From this we conclude that

the relation “is matched by” here is symmetric: x0
0 = x0.

Dzhafarov (2003) called this symmetry Regular Mediality.

In the bi-areal comparisons, as we know from section 3.2,

this symmetry is all one needs to ensure that no soritical

sequences are possible: refer to (8) in relation to (6) and

(7).

In the pairwise comparison paradigm with “same” versus

“different” judgments, the computations of matches is based

on the probabilities (2), or, in the simplified notation,

 (x, y) = Pr [x and yare different] .

It is assumed, in agreement with all available observations,

that the psychometric function y 7!  (x0, y) achieves its

global minimum at some point y0, and this point is taken

to be the match for x0. The value x0
0 at which the psy-

chometric function y 7!  (x, y0) achieves its minimum is

analogously taken to match y0. If x0
0 and x0 coincide, then

we again have symmetry with the ensuing No-Sorites prop-

erty. The equality x0
0 = x0 (called Regular Minimality in

Dzhafarov, 2002) is not guaranteed mathematically, but

there is no empirical evidence that it is violated (see Sec-

tion Empirical Evidence in Dzhafarov & Colonius, 2006, for

a review).

Since we have made a prominent use of the example

with coffee cups taken from Luce (1956), it should be men-

tioned that in later publications Luce abandoned the in-

terpretation of semiorders in terms of intervals of stimuli

that are pairwise indistinguishable. In Luce and Galanter

(1963) semiorders are treated as intervals of stimuli between

two fixed levels of the psychometric functions � (x, y): for

an arbitrarily chosen probability ⇡ between 1/2 and 1, x

and y are “⇡-indifferent” (or perhaps an observer is “⇡-

indifferent” to their difference) if 1 � ⇡  � (x, y)  ⇡. If

now two “⇡-indifferent” stimuli were to be declared match-

ing each other, soritical sequences would indeed be easily

constructed, both of the tetradic bi-areal variety and the

triadic tri-areal one. To present this construction as evi-

dence for soritical sequences, however, would be analogous

to declaring numerical equality intransitive because one can

also define approximate numerical equality.

Summarizing, all available empirical evidence is in a good

agreement with the matching relation being irreflexive (be-

cause the stimuli being compared must belong to different
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OAs), symmetric, and transitive, provided these properties

are understood as discussed in Section 2.1.

In fact, to prevent possible misformulations of these prop-

erties, it is more convenient to replace them with a more

clearly defined notion of a well-matched regular stimulus

space (Dzhafarov & Dzhafarov, 2010b). This definition

deals with an arbitrary set of OAs, not necessarily just two

or three of them. Imagine, e.g., an experiment in which

point-size flashes can appear pairwise in any two distinct

locations on a screen, and the task is to compare or match

their brightness: the set of the OAs in this case is infinite

(or very large if physical constraints, such as pixellation,

are considered).

The well-matched regular spaces of stimuli are defined

by the following two properties:

(Well-Matchedness) For any three OAs, not necessar-

ily distinct, and any stimulus a(1) (in OA1), one can

choose b(2) and c(3) (in the remaining two OAs) such

that any two of these stimuli match each other.

(Regularity) If two stimuli a(1) and b(1) (in the same OA)

are matched by a third stimulus, c(2) (in another OA),

then a = b.

An obvious consequence of regular well-matchedness is the

No-Sorites property.

In more general conceptual settings, the equality a = b

in the Regularity condition is to be replaced with the equiv-

alence of a(1) and b(2). Equivalence of two stimuli in the

same OA is defined by their matching or mismatching any

other stimulus together. This notion, as distinct from that

of matching, was proposed by Goodman (1955). The equiv-

alence of stimuli is an important notion in some applica-

tions, e.g., color comparisons, where each color can be rep-

resented by an infinity of metamorphic spectra. However,

in tasks like the ones discussed in this paper (comparison of

dot locations, or segments, or shapes), the equivalence un-

der the conventional parameterizations simply means iden-

tity. Moreover, stimuli in well-matched regular space can

always be transformed to make equivalent stimuli identi-

cally labeled. See Dzhafarov and Colonius (2006) for dis-

cussion and examples.

The correct way to view the definition of regular well-

matchedness is to consider it a desideratum for a well-

constructed notion of matching relation in a specific ex-

perimental paradigm. Our claim definitely is not that any

definition of matching relation should comply with the two

conditions above: one can always construct a definition that

will not (e.g., Luce and Galanter’s 1963 “⇡-indifference”).

The claim is rather that (a) these conditions are applicable

to the conventional psychophysical computations of Points

of Subjective Equality; and therefore (b) they can serve as

guiding principle for constructing new definitions.
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