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Mathematical foundations of 
Universal Fechnerian Scaling

Ehtibar N. Dzhafarov
Purdue University
West Lafayette, Indiana

and

Swedish Collegium for Advanced Study
Uppsala, Sweden

9.1  Introduction

The main idea of Fechner’s original theory (Fechner, 1860, 1877, 1887) can be 
described as follows (see Figure  9.1). If stimuli are represented by real numbers 
(measuring stimulus intensities, or their spatial or temporal extents), the subjective 
distance from a stimulus a to a stimulus b > a is computed by cumulating from a 
to b, through all intermediate values, a measure of dissimilarity of every stimulus x 
from its “immediate” neighbors on the right. A modern rendering of Fechner’s the-
ory (Dzhafarov, 2001) de!nes the dissimilarity between x and x + dx as

 D x x dx c x x dx, ,+( ) = +( ) −



γ 1

2
, (9.1)

where γ (x, y) is a psychometric function

 γ (x, y) = Pr [y is judged to be greater than x] (9.2)

with no “constant error” (i.e., γ (x, x) = 1/2), and c is a constant allowed to vary 
from one stimulus continuum to another. Assuming that γ (x, y) is differentiable, and 
putting

 
D x x dx

dx

x y

y
F x

y x

, ,+( ) =
∂ ( )

∂
= ( )

=

γ
,

the Fechnerian distance from a to b ≥ a becomes

 G a b F x dx
a

b

,( ) = ( )∫ .

9
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186 Measurement with persons: Theory, methods, and implementation areas

In particular, if

 F x
k
x

( ) = ,

which is a rigorous form of Weber’s law,

 G a b k
b
a

, log( ) = .

We get the celebrated Fechner’s law by setting a at the “absolute threshold” x0,

 S x k
x
x

( ) = log
0

,

where S(x) can be referred to as the magnitude of the sensation caused by stimulus x. 
If F(x) happens to be different from k/x, the expressions G(a, b) and S(x) are modi!ed 
accordingly. Thus, from

 F x
k
x

( ) = −1 β , 1 ≥ β > 0,

one gets

 G a b
k
b a,( ) = −( )β

β β

for the subjective distance from a to b, and

 S x
k
x x( ) = −( )β

β β
0

Figure 9.1 Fechner’s main idea. To compute the subjective (Fechnerian) distance from 
a to b on a stimulus continuum, one cumulates (here, integrates) the dissimilarity of x from 
its in!nitesimally close neighbors on the right as x changes from a to b.
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Mathematical foundations of Universal Fechnerian Scaling 187

for the sensation magnitude of x. In this rendering Fechner’s theory is impervious to 
the mathematical (Luce & Edwards, 1958) and experimental (Riesz, 1933) critiques 
levied against it (for details see Dzhafarov, 2001, and Dzhafarov & Colonius, 1999). 
The main idea of this interpretation was proposed by Pfanzagl (1962), and then inde-
pendently reintroduced in Creelman (1967), Falmagne (1971), and Krantz (1971) 
within the framework of the so-called “Fechner problem” (Luce & Galanter, 1963).

Fechner’s theory launched the world-view (or “mind-view”) of classical psycho-
physics, according to which perception is essentially characterized by a collection of 
unidimensional continua representable by axes of nonnegative real numbers. Each 
continuum corresponds to a certain “sensory quality” (loudness, spatial extent, satu-
ration, etc.) any two values of which, sensory magnitudes, are comparable in terms 
of “less than or equal to.” Moreover, each such continuum has a primary physi-
cal correlate, an axis of nonnegative reals representing intensity, or spatiotempo-
ral extent of a particular physical attribute: the sensory attribute is related to its 
physical correlate monotonically and smoothly, starting from the value of the abso-
lute threshold. This mind-view has been dominant throughout the entire history of 
psychophysics (Stevens, 1975), and it remains perfectly viable at present (see, e.g., 
Luce, 2002, 2004).

There is, however, another mind-view, also derived from Fechner’s idea of com-
puting distances from local dissimilarity measures, dating back to Helmholtz’s (1891) 
and Schrödinger’s (1920, 1920/1970, 1926/1970) work on color spaces. Physically, 
colors are functions relating radiometric energy to wavelength, but even if their 
representation by means of one of the traditional color diagrams (such as CIE or 
Munsell) is considered their physical description, and even if the subjective represen-
tation of colors is thought of in terms of a !nite number of unidimensional attributes 
(such as, in the case of aperture colors, their hue, saturation, and brightness), the 
mapping of physical descriptions into subjective ones is clearly that of one multi-
dimensional space into another. In this context the notions of sensory magnitudes 
ordered in terms of “greater–less” and of psychophysical functions become arti!cial, 
if applicable at all. The notion of subjective dissimilarity, by contrast, acquires the 
status of a natural and basic concept, whose applicability allows for but does not 
presuppose any speci!c system of color coordinates, either physical or subjective. 
The natural operationalization of the discrimination of similar colors in this context 
is their judgment in terms of “same or different,” rather than “greater or less.” (For a 
detailed discussion of the “greater–less” versus “same–different” comparisons, see 
Dzhafarov, 2003a.)

This mind-view has been generalized in the theoretical program of Multidimen-
sional Fechnerian Scaling (Dzhafarov, 2002a–d; Dzhafarov & Colonius, 1999, 2001). 
The scope of this differential-geometric program is restricted to stimulus spaces rep-
resentable by open connected regions of Euclidean n-space (refer to Figure 9.2 for 
an illustration.). This space is supposed to be endowed with a probability-of-different 
function

 ψ(x, y) = Pr [y and x are judged to be different].
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188 Measurement with persons: Theory, methods, and implementation areas

Any two points a, b in such a space can be connected by a continuously differen-
tiable path x(t) de!ned on a segment of reals [a, b]. The “length” of this path can be 
de!ned by means of the following construction. Assume that

 ψ (x, x) < min {ψ (x, y), ψ (y, x)}

for all distinct x, y, and that for any c ∈ [a, b] the discrimination probability ψ(x(c), x(t)) 
has a positive right-hand derivative at t = c+,

 
d

d

ψ x x
x x

c t

t
F c c

t c

( ) ( )( ) = ( ) ( )( )
= +

,
, ! .

The function F(x(t), ẋ(t)) is referred to as a submetric function, and the differential 
F(x(t), ẋ(t))dt serves as the local dissimilarity between x(t) and x(t) + ẋ(t)dt. Assum-
ing further that F is continuous, we de!ne the length of the path x(t) as the integral

Figure 9.2 A continuously differentiable path x(t) (thick curve) is shown as a mapping of 
an interval [a, b] (horizontal line segment) into an area of Eucliean space (gray area). For 
any point c ∈ [a, b] there is a function t ↦ ψ (x(c), x(t)) de!ned for all t ∈ [a, b] (shown by 
V-shaped curves for three positions of c). The derivative of ψ (x(c), x(t)) at t = c+ (the slope of 
the tangent line at the minimum of the V-shaped curve) is taken for the value of F (x(c), ẋ(c)), 
and the integral of this function from a to b is taken for the value of length of the path. The 
inset at the left top corner shows that one should consider the lengths for all such paths from 
a to b, and take their in!mum as the (generally asymmetric) distance Gab. The overall, sym-
metric distance G*ab is computed as Gab + Gba. [The lengths of paths can be alternatively 
computed by differentiating ψ (x(t), x(c)) rather than ψ (x(c), x(t)). Although this generally 
changes the value of Gab, it makes no difference for the value of G*ab.]
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Mathematical foundations of Universal Fechnerian Scaling 189

 D a b F t t t
a

b

x x x, , ( ) = ( ) ( )( )∫ ! d .

Applying this to all continuously differentiable paths connecting a to b and !nding 
the in!mum of their D-lengths, one de!nes the (asymmetric) Fechnerian distance 
Gab from a to b (a function which satis!es all metric axioms except for symmetry). 
The overall (symmetrical) Fechnerian distance G*ab between a and b is computed 
as Gab + Gba. Although this description is schematic and incomplete it should suf-
!ce for introducing one line of generalizing Fechnerian Scaling: dispensing with 
unidimensionality but retaining the idea of cumulation of local dissimilarities.

A further line of generalization is presented in Dzhafarov and Colonius (2005b, 
2006c). It is designated as Fechnerian Scaling of Discrete Object Sets and applies 
to stimulus spaces comprised of “isolated entities,” such as schematic faces, let-
ters of an alphabet, and the like (see Figure 9.3). Each pair (x, y) of such stimuli is 
assigned a probability ψ (x, y) with which they are judged to be different from each 
other. Schematizing and simplifying as before, the local discriminability measure is 
de!ned as

 D (x, y) = ψ (x, y) – ψ (x, x),

a = x0

x6 = b

x1

x2

x3

x4

x5

Figure 9.3 Given a chain of points x0, x1, …, xk leading from a to b, the dissimilarities 
between its successive elements are summed (cumulated). In a discrete space, the (generally 
asymmetric) distance Gab from a to b is computed as the in!mum of the cumulated dissimi-
larities over all chains leading from a to b. The symmetrical distance G*ab between a and b 
is computed as Gab + Gba.
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190 Measurement with persons: Theory, methods, and implementation areas

and the (asymmetric) Fechnerian distance G(a, b) is de!ned as the in!mum of

 D i i

i

k

x x, +

=

( )∑ 1

0

computed across all possible !nite chains of stimuli

 a = x0, x1, …, xk, xk+1 = b

connecting a to b. Here the deviation from Fechner’s original theory is greater than 
in the Multidimensional Fechnerian Scaling: we dispense not only with unidimen-
sionality, but also with the “in!nitesimality” of dissimilarities being cumulated. But 
the idea of computing dissimilarities from discrimination probabilities and obtain-
ing distances by some form of dissimilarity cumulation is retained.

The purpose of this work is to present a sweeping generalization of Fechner’s the-
ory which is applicable to all possible stimulus spaces endowed with “same-differ-
ent” discrimination probabilities. This theory, called Universal Fechnerian Scaling 
(UFS), is presented in the trilogy of papers Dzhafarov and Colonius (2007), Dzhafarov 
(2008a), and Dzhafarov (2008b). We follow these papers closely, but omit proofs, 
examples, and technical explanations. Our focus is on the mathematical foundations 
of UFS, which are formed by an abstract theory called Dissimilarity Cumulation 
(DC): it provides a general de!nition of a dissimilarity function and shows how this 
function is used to impose on stimulus sets topological and metric properties.

The potential sphere of applicability of UFS is virtually unlimited. The ability 
to decide whether two entities are the same or different is the most basic faculty of 
all living organisms and the most basic requirement of arti!cial perceiving systems, 
such as intelligent robots. The perceiving system may be anything from an organism 
to a person to a group of consumers or voters to an abstract computational proce-
dure. The stimuli may be anything from letters of alphabet (from the point of view 
of grammar school children) to different lung dysfunctions represented by X-ray 
!lms (from the point of view of a physician) to brands of a certain product (from 
the point of view of a group of consumers) to political candidates or propositions 
(from the point of view of potential voters) to competing statistical models (from 
the point of view of a statistical !tting procedure). Thus, if stimuli are several lung 
dysfunctions each represented by a potentially in!nite set of X-ray !lms, a physician 
or a group of physicians can be asked to tell if two randomly chosen X-ray !lms do 
or do not indicate one and the same dysfunction. As a result each pair of dysfunc-
tions is assigned the probability with which their respective X-ray representations 
are judged to indicate different ailments. If stimuli are competing statistical models, 
the probability with which models x and y are “judged” to be different can be esti-
mated by the probability with which a dataset generated by the model x allows one to 
reject the model y (see Dzhafarov & Colonius, 2006a, for details). The questions to 
the perceiving system can be formulated in a variety of forms: “Are x and y the same 
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Mathematical foundations of Universal Fechnerian Scaling 191

(overall)?” or “Do x and y differ in respect to A?” or “Do x and y differ if one ignores 
their difference in property B?” or “Do x and y belong to one and the same category 
(from a given list)?”, and so on. Note the difference from the other known scaling 
procedure based on discrimination probabilities, Thurstonian Scaling (Thurstone, 
1927a,b). This procedure only deals with the probabilities with which one stimulus is 
judged to have more of a particular property (such as attractiveness, brightness, loud-
ness, etc.) than another stimulus. The use of these probabilities therefore requires that 
the investigator know in advance which properties are relevant, that these properties 
be semantically unidimensional (i.e., assessable in terms of “greater–less”), and that 
the perception of the stimuli be entirely determined by these properties. No such 
assumptions are needed in UFS. Moreover, in the concluding section of the chapter 
it is mentioned that the discrimination probabilities may very well be replaced with 
other pairwise judgments of “subjective difference” between two stimuli, and that 
the theory can even be applied beyond the context of pairwise judgments altogether, 
for example, to categorization judgments. It is also mentioned there that the dis-
similarity cumulation procedure can be viewed as an alternative to the nonmetric 
versions of Multidimensional Scaling, applying therefore in all cases in which one 
can use the latter.*

9.2  Psychophysics of discrimination

We observe the following notation conventions. Boldface lowercase letters, a, b′, x, 
yn, …, always denote elements of a set of stimuli. Stimuli are merely names (qualita-
tive entities), with no algebraic operations de!ned on them. Real-valued functions of 
one or more arguments that are elements of a stimulus set are indicated by strings 
without parentheses:

 ψab, Dabc,DXn, Ψ(ι)ab, ….

9.2.1  Regular Minimality and canonical representations

Here, we brie#y recapitulate some of the basic concepts and assumptions under-
lying the theory of same–different discrimination probabilities. A toy example in 
Figure 9.4 provides an illustration. A detailed description and examples can be found 
in Dzhafarov (2002d, 2003a) and Dzhafarov and Colonius (2005a, 2006a).

The arguments x and y of the discrimination probability function

 ψ∗xy = Pr [x and y are judged to be different]

* As a data-analytic procedure, UFS is implemented (as of September 2009) in three computer programs: 
the R-language package “fechner” described in Ünlü, Kiefer, and Dzhafarov (2009) and available 
at CRAN; a MATLAB-based program FSCAMDS developed at Purdue University and available at 
http://www1.psych.purdue.edu/~ehtibar/Links.html; and a MATLAB toolbox developed at Oldenburg 
University and available at http://www.psychologie.uni-oldenburg.de/stefan.rach/31856.html.
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192 Measurement with persons: Theory, methods, and implementation areas

belong to two distinct observation areas,

 ψ*: #*
1 × #*

2 → [0, 1].

Thus, #*
1  (the !rst observation area) may represent stimuli presented chronologi-

cally !rst or on the left, whereas #*
2 (the second observation area) designates stimuli 

presented, respectively, chronologically second or on the right. The adjectives “!rst” 
and “second” refer to the ordinal positions of stimulus symbols within a pair (x, y).

For x,x′ ∈ #*
1, we say that the two stimuli are psychologically equal (or meta-

meric) if ψ*xy = ψ*x′y for any y ∈ #*
2. Analogously, the psychological equality 

for y, y′ ∈ #*
2 is de!ned by ψ*xy = ψ*xy′, for any x ∈ #*

1. It is always possible to 
“reduce” the observation areas, that is, relabel their elements so that psychologically 
equal stimuli receive identical labels and are no longer distinguished. The discrimi-
nation probability function ψ* can then be rede!ned as

 ~ψ : #1 × #2 → [0, 1].

The law of Regular Minimality is the statement that there are functions h : #1 → #2 
and g : #2 → #1 such that

1
1
1
1

0.6
0.1
0.8
x7

0.7
0.7
0.7
0.7
0.5
0.9
0.6
x5

0.7
0.7
0.7
0.7
0.5
0.9
0.6
x3

1110.5y7

1110.5y4

0.10.80.80.9y2

1110.5y6

1110.5y5

0.6111y3

0.80.10.10.6y1

x6x4x2x1

ya
yb

yc

yd

xa xc xb xd

110.70.5yd

0.610.51yc

0.10.80.90.9yb

0.80.10.60.6ya

xdxcxbxa

0.50.711d
10.50.61c

0.90.90.10.8b
0.60.60.80.1a
dcba

Observation area 1, xc

a b c d
ya

xd
yb

xb
yc

xa
ydObservation area 2,

Common labels,

2
1

* *
*

1
2

2
1

Figure 9.4 A toy example used in Dzhafarov & Colonius (2006a). The transformation from 
(#*

1, #*
2,ψ*) to (#1, #2, ~ψ) is the result of “lumping together” psychologically equal stimuli 

(e.g., the stimuli y4, y5, y6, y7 are psychologically equal in #*
2, stimuli x2 and x4 are psycho-

logically equal in #*
1). The space (#1, #2, ~ψ) satis!es the Regular Minimality condition (the 

minimum in each row is also the minimum in its column) because of which (#1, #2, ~ψ) can be 
canonically transformed into (#,ψ), by means of the transformation table shown in between.
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P3                         h g≡ −1

Stimulus y = h(x) ∈ #2 is called the Point of Subjective Equality (PSE) for x ∈ #1; 
analogously, x = g(y) ∈ #1 is the PSE for y ∈ #2. The law of Regular Minimality 
states therefore that every stimulus in each of the (reduced) observation areas has a 
unique PSE in the other observation area, and that y is the PSE for x if and only if 
x is the PSE for y. In some contexts the law of regular minimality is an empirical 
assumption, but it can also serve as a criterion for a properly de!ned stimulus space. 
For a detailed discussion of the law and its critiques see Dzhafarov (2002d, 2003a, 
2006), Dzhafarov and Colonius (2006a), and Ennis (2006).

Due to the law of Regular Minimality, one can always relabel the stimuli in #1 or 
#2 so that any two mutual PSEs receive one and the same label. In other words, one 
can always bijectively map #1 → # and #2 → # so that x ↦ a and y ↦ a if and only 
if x ∈ #1 and y ∈ #2 are mutual PSEs: y = h(x), x = g(y). The set of labels # is called 
a canonically transformed stimulus set. Its elements too, for simplicity, are referred 
to as stimuli. The discrimination probability function ~ψ can now be presented in a 
canonical form,

 ψ : # × # → [0, 1],

with the property

 ψaa < min {ψab,ψba}

for any a and b ≠ a. Note that the !rst and the second a in ψaa may very well refer to phys-
ically different stimuli (equivalence classes of stimuli): hence one should exercise cau-
tion in referring to ψaa as the probability with which a is discriminated from “itself.”

9.2.2.  From discrimination to dissimilarity

For the canonically transformed function ψ, the psychometric increments of the !rst 
and second kind are de!ned as, respectively,

 Ψ(1)ab = ψab – ψaa

and

 Ψ(2)ab = ψba – ψaa.

Due to the canonical form of ψ these quantities are always positive for b ≠ a.
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194 Measurement with persons: Theory, methods, and implementation areas

The main assumption of UFS about these psychometric increments is that both of 
them are dissimilarity functions. The meaning of this statement becomes clear later, 
after a formal de!nition of a dissimilarity function is given.

Denoting by D either Ψ(1)  or Ψ(2)  one can compute the (generally asymmetric) 
Fechnerian distance Gab by considering all possible !nite chains of stimuli x1…xk 
for all possible k and putting

 G D D D
k x x

k
k

ab ax x x x b= + +…+[ ]
…
inf
, 1

1 1 2 .

The overall Fechnerian distance is then computed as

 G*ab = G1ab + G1ba.

This quantity can be interpreted as the in!mum of D-lengths of all !nite closed 
loops that contain points a and b. That is,

 G D D D D
k
l

k
k
l

* inf
,
,

ab ax x x x b by
x x
y y

= + +…+ +
…
…
1
1

1 1 2 11 1 2+ +…+[ ]D D ly y y a

It is easy to see that the D-length of any given loop remains invariant if D ≡ Ψ(1) is 
replaced with D ≡ Ψ(2) and the loop is traversed in the opposite direction. The value 
of G*ab therefore does not depend on which of the two psychometric increments is 
taken for D. Henceforth we tacitly assume that D may be replaced with either Ψ(1) or 
Ψ(2), no matter which.

9.3  Dissimilarity Cumulation theory

9.3.1  Topology and uniformity

To explain what it means for a function D : # × # → ℝ to be a dissimilarity func-
tion, we begin with a more general concept. Function D : # × # → ℝ is a (uni-
form) deviation function if it has the following properties: for any a, b ∈ # and any 
sequences an, a′n, bn, b′n in #,

D D

D D

D

1 0

2 0

3

.   ;

.   ;

.  (

[ ]
[ ]
[ ]

≠ ⇒ >

=

a b ab

aa

Uniform CContinuity) If and thenD Dn n n na a b b′ → ′ →0 0, D Dn n n n′ ′ − →a b a b 0.

See Figure 9.5 for an illustration of Property D3. If D is a symmetric metric, then 
it is a deviation function, with the uniform continuity property holding as a theorem. 
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Mathematical foundations of Universal Fechnerian Scaling 195

If D is an asymmetric metric, then it is a deviation function if and only if it addition-
ally satis!es the “invertibility in the small” condition,

 Dana′n → 0 ⇒ Da′nan → 0.

In the following the term metric (or distance), unless speci!cally quali!ed as sym-
metric, always refers to an asymmetric metric (distance) invertible in the small.

D induces on # the notion of convergence: we de!ne an ↔ bn to mean Danbn → 0. 
The notation is unambiguous because convergence ↔ is an equivalence relation 
(i.e.,it is re#exive, symmetric, and transitive). In particular, an ↔ a means both 
Daan 0 and Dana → 0. The convergence (a1

n, …, an
k) 

↔ (b1
n, …, bn

k) can be de!ned, e.g., 
by maxi Dan

i bn
i → 0.

A topological basis on # is a family of subsets of # covering # and satisfying 
the following property (Kelly, 1955, p. 47): if $ and % are within the basis, then for 
any x ∈ $ ∩ % the basis contains a set & that contains x. Given a topological basis on 
#, the topology on # (a family of open sets “based” on this basis) is obtained by 
taking all possible unions of the subsets comprising the basis (including the empty 
set, which is the union of an empty class of such subsets). Deviation D induces on # 
a topology based on

 'D (x,ε)= {y ∈ # : Dxy < ε}

taken for all x ∈ # and all real ε > 0. We call this topology (based on 'D-balls) 
the D-topology.

These topological considerations, as it turns out, can be strengthened: D induces 
on # not only a topology but a more restrictive structure, called uniformity. Recall 
(Kelly, 1955, p. 177) that a family of subsets of # × # forms a basis for a unifor-
mity on # if it satis!es the following four properties: if ( and ' are members of 
the basis, then

 1. ( includes as its subset ∆ = {(x, x): x ∈ #}.
 2. (−1 = {(y, x) : (x, y) ∈ (} includes as its subset a member of the basis.

an

a ń

b ń

bn

Figure 9.5 An illustration for property D3 (uniform continuity). Consider an in!nite 
sequence of quadrilaterals a1a′1b′1b1, a2a′2b′2b2, …, such that the D-lengths of the sides ana′n 

and bnb′n (directed as shown by the arrows) converge to zero. Then the difference between the 
D-lengths of the sides anbn and a′nb′n (in the direction of the arrows) converges to zero.
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 3. For some member ℭ of the basis, {(x, z) ∈ #2 : for some y, (x, y) ∈ ℭ ∧ 

(y, z) ∈ ℭ} ⊂ (.
 4. ( ∩ ' includes as its subset a member of the basis.

Given a uniformity basis on #, the uniformity on # (“based” on this basis) is 
obtained by taking each member of the basis and forming its unions with all subsets 
of # × #.A member of a uniformity is called an entourage. Deviation D induces on 
# a uniformity based on entourages

 *D(ε) = {(x, y) ∈ #2 : Dxy < ε}

taken for all real ε > 0. This uniformity satis!es the so-called separation axiom:

 ∩ε*D (ε) = {(x, y) ∈ #2 : x = y}.

We call this uniformity the D-uniformity. The D-topology is precisely the topology 
induced by the D-uniformity (Kelly, 1955, p. 178):

 'D (x,ε) = {y ∈ # : (x, y) ∈ *D (ε)}

is the restriction of the basic entourage *D (ε) to the pairs (x = const, y).

9.3.2  Chains and dissimilarity function

Chains in space # are !nite sequences of elements, written as strings: ab, abc, x1…
xk, etc. Note that the elements of a chain need not be pairwise distinct. A chain of 
cardinality k (a k-chain) is the chain with k elements (vertices), hence with k – 1 links 
(edges). For completeness, we also admit an empty chain, of zero cardinality. We use 
the notation

 D Dk i i

i

k

x x x x1 1

1

1

… = +

=

−

∑ ,

and call it the D-length of the chain x1…xk.
If the elements of a chain are not of interest, it can be denoted by a boldface capi-

tal, such as X, with appropriate ornaments. Thus, X and Y are two chains, XY is 
their concatenation, aXb is a chain connecting a to b. The cardinality of chain X is 
denoted "X". Unless otherwise speci!ed, within a sequence of chains, Xn, the cardinal-
ity "Xn" generally varies: Xn = xn

1…xn
kn

.
A uniform deviation function D on # is a uniform dissimilarity (or, simply, dis-

similarity) function on # if it has the following property:

[D4.] for any sequence of chains anXnbn,

 D Dn n n n na X b a b→ ⇒ →0 0.
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See Figure 9.6 for an illustration. If D is a metric, then D is a dissimilarity function 
as a trivial consequence of the triangle inequality.

9.3.3  Fechnerian distance

The set of all possible chains in # is denoted by C#, or simply C. We de!ne function 
Gab by
 G D

C
ab aXb

X
=

∈
inf .

Gab is a metric, and G*ab = Gab + Gba is a symmetric metric (also called “over-
all”). We say that the metric G and the overall metric G* are induced by the dissimi-
larity D. Clearly, G*ab can also be de!ned by

 G D D
C C

* inf inf
, ,

ab aXbYa bXaYb
X Y X Y

= =
( )∈ ( )∈2 2

.

9.3.4  Topology and uniformity on (#,G)

It can be shown that

 Danbn → 0 ⇔ Ganbn → 0,

and

 an ↔ bn ⇔ Ganbn → 0 ⇔ Gbnan → 0 ⇔ G*anbn = G*bnan → 0.

As a consequence, G induces on # a topology based on sets

 'G (x,ε) = {y ∈ # : Gxy < ε}

taken for all x ∈ # and positive ε. This topology coincides with the D-topology. 
Analogously, G induces on # a uniformity based on the sets

 (G (ε) = {(x, y) ∈ #2 : Gxy < ε}

taken for all positive ε. This uniformity coincides with the D-uniformity. The metric 
G is uniformly continuous in (x, y), i.e., if a′n ↔ an and b′n ↔ bn, then 

 Ga′nb′n − Ganbn → 0.

...
an

bn

Figure 9.6 An Illustration for Property D4 (chain property). Consider an in!nite sequence 
of chains a1X1b1, a2X2b2, …, such that "Xn" increases beyond bounds with n → ∞, and DanXnbn 
converges to zero. Then Danbn (the D-length of the dotted arrow) converges to zero too.
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The space (#,D) being uniform and metrizable, we get its standard topological 
characterization (see, e.g., Hocking & Young, 1961, p. 42): it is a completely normal 
space, meaning that its singletons are closed and any its two separated subsets ( and 
' (i.e., such that ( ∩ ' = ( ∩ ' = ∅) are contained in two disjoint open subsets.

The following is an important fact which can be interpreted as that of internal 
consistency of the metric G induced by means of dissimilarity cumulation: once 
Gab is computed as the in!mum of the D-length across all chains from a to b, the 
in!mum of the G-length across all chains from a to b equals Gab:

 DaXnb → Gab ⇒ GaXnb → Gab,

where we use the notation for cumulated G-length analogous to that for D-length,

 G Gk i i

i

k

x x x x1 1

1

1

… = +

=

−

∑ .

Extending the traditional usage of the term, one can say that G is an intrinsic 
metric. This is an extension because traditionally the notion of intrinsic metric pre-
supposes the existence of paths (continuous images of segments of reals) and their 
lengths. In subsequent sections we consider special cases of dissimilarity cumulation 
in which the intrinsicality of G does acquire its traditional meaning.

9.4  Dissimilarity Cumulation in arc-connected spaces

9.4.1  Path and their lengths

Because the notion of uniform convergence in the space (#,D) is well-de!ned,

 an ↔ bn ⇔ Danbn → 0,

we can meaningfully speak of continuous and uniformly continuous functions from 
reals into #.

Let f : [a, b] → #, or f "[a, b], be some continuous (hence uniformly continu-
ous) function with f(a) = a, f(b) = b, where a and b are not necessarily distinct. We 
call such a function a path connecting a to b. A space is called arc-connected (or 
path-connected) if any two points in it can be connected by a path. Even though 
arcs have not yet been introduced, the terms “arc-connected” and “path-connected” 
are synonymous, because (#,D) is a Hausdorff space, so if two points in it are con-
nected by a path they are also connected by an arc (see, e.g., Hocking & Young, 1961, 
pp. 116–117). Hereafter we assume that (#,D) is an arc-connected space.

Choose an arbitrary net on [a, b],

 μ = (a = x0 ≤ x1 ≤ … ≤ xk ≤ xk+1 = b),

where the xi’s need not be pairwise distinct. We call the quantity
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 δµ = −( )
= …

+max
, , ,i k

i ix x
0 1

1

the net’s mesh. As δμn → 0, nets μn provide a progressively better approximation for 
[a, b]. 

Given a net μ = (x0, x1, …, xk, xk+1), any chain X = x0x1 … xkxk+1 (with the elements 
not necessarily pairwise distinct, and x0 and xk+1 not necessarily equal to a and b) can 
be used to form a chain-on-net

 Xµ = ((x0, x0), (x1, x1), …, (xk, xk), (xk+1, xk+1)).

Denote the class of all such chains-on-nets Xµ (for all possible pairs of a chain X and 
a net μ of the same cardinality) by ℳa

b. Note that a chain-on-net is not a function from 
{x : x is an element of μ} into #, for it may include pairs (xi = x, xi) and (xj = x, xj) 
with xi ≠ xj. Note also that within a given context Xµ and Xν denote one and the same 
chain on two nets, whereas Xµ, Yµ denote two chains on the same net.

We de!ne the separation of the chain-on-net Xµ = ((x0, x0), …, (xk+1, xk+1)) ∈ ℳa
b 

from a path f " [a, b] as

 σ µ

µ
f X f x( ) = ( )

∈
max
x

i i
i

D x .

For a sequence of paths fn" [a, b], any sequence of chains-on-nets Xn
µn ∈ ℳa

b with 
δμn → 0 and σfn (Xn

µn) → 0 is referred to as a sequence converging with fn. We denote 
such convergence by Xn

µn → fn. In particular, Xn
µn → f for a !xed path f " [a, b] means 

that δμn → 0 and σf (Xn
µn) → 0: in this case we can say that Xn

µn converges to f. See 
Figure 9.7 for an illustration.

We de!ne the D-length of f " [a, b] as

 D D Df X X
X f

Xf

= =
→ →

( )→
lim inf lim inf

µ
µ

δµ
σ

0
0

,

where all Xµ ∈ ℳa
b.

δ

σ

a

a
b

b

Figure 9.7 A chain-on-net Xµ is converging to a path f as σ = σf (X
µ) → 0 and δ = δμ → 0.
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Given a path f " [a, b], the class of the chains-on-nets Xµ such that δμ < δ and 
σf (Xµ) < ε is nonempty for all positive δ and ε, because this class includes appropri-
ately chosen inscribed chains-on-nets

 ((a, a), (x1, f (x1)), …, (xk, f (xk)), (b, b)).

Here, obviously, σf (Xµ) is identically zero. Note, however, that with our de!nition of 
D-length one generally cannot con!ne one’s consideration to the inscribed chains-
on-nets only (see Figure 9.8).

Let us consider some basic properties of paths. For any path f " [a, b] connecting 
a to b,

 Df ≥ Gab.

That is, the D-length of a path is bounded from below by Gab. There is no upper 
bound for Df; this quantity need not be !nite. Thus, it is shown below that when 
D is a metric, the notion of Df coincides with the traditional notion of path length; 
and examples of paths whose length, in the traditional sense, is in!nite, are well-
known (see, e.g., Chapter 1 in Papadopoulos, 2005). We call a path D-recti!able if 
its D-length is !nite.

...

...

(1, 0)

(a1, a2) (b1, b2)

(b1́, b 2́)
(a1́, a 2́)

(0, 1)(0, 0)

(1, 0)

(0, 1)(0, 0)

b2

a2

a1 b1

x1,i+1x1,i
x 2

,i
x 2

,i+
1

Figure 9.8 A demonstration of the fact that inscribed chains are not suffcient for 
D-length computations. The D from (a1,a2) to (b1,b2) is de!ned as "a1 − b1" + "a2 − b2" + 
min {"a1 − b1", "a2 − b2"}. It is a dissimilarity function, as illustrated in the top panels. Bottom 
left: the staircase chain has the cumulated dissimilarity 2, and 2 is the true D-length of the 
hypotenuse. Bottom right: the inscribed chain has the cumulated dissimilarity 3.
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We next note the additivity property for path length. For any path f " [a, b] and 
any point z ∈ [a, b],

 Df " [a, b] = Df " [a, z] + Df [z, b].

Df for any path f " [a, b] is nonnegative, and Df = 0 if and only if f is constant (i.e., 
f ([a, b]) is a singleton).

The quantity

 σ f g f g( ) = ( ) ( )
∈[ ]
max

,x a b
D x x

is called the separation of path g" [a, b] from path f" [a, b]. Two sequences of paths 
fn and gn are said to be (uniformly) converging to each other if σfn (gn) → 0. Due to 
the symmetry of the convergence in #, this implies σgn (fn) → 0, so the de!nition 
and terminology are well-formed. We symbolize this by fn → gn. In particular, if f is 
!xed then a sequence fn converges to f if σf (fn) → 0. We present this convergence as 
fn → f. Note that if fn → f, the endpoints an = fn (a) and bn = fn (b) generally depend 
on n and differ from, respectively a = f (a) and b = f (b).

The following very important property is called the lower semicontinuity of 
D-length (as a function of paths). For any sequence of paths fn → f,

 lim inf
n

nD D
→∞

≥f f .

9.4.2  G-lengths

Because the metric G induced by D in accordance with

 G Dab aXb
X

= inf

is itself a dissimilarity function, the G-length of a path f : [a, b] → # should be 
de!ned as

 Gf = lim inf GX,
 Xμ ∈ℳa

b

 Xμ G→f

where (putting X = x0x1 … xkxk+1),

 G G i i

i

k

X x x= +

=
∑ 1

0

,

and the convergence X fµ →G  (where μ is the net a = x0, x1, …, xk, xk+1 = b correspond-
ing to X) means the conjunction of δμ → 0 and
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 σ µ
f X f x*

, ,
max( ) = ( ) →

= … +i k
i iG x

0 1
0 .

It is easy to see, however, that X fµ →G  and Xµ → f are interchangeable:

 X f X fµ µ→ ⇔ →G .

Because G is a metric, we also have, by a trivial extension of the classical theory 
(e.g., Blumenthal, 1953), 

 Gf = sup GZ 

with the supremum taken over all inscribed chains-on-nets Zν; moreover,

 G G
n

nf Z=
→∞

lim

for any sequence of inscribed chains-on-nets Zn
νn with δνn → 0.

As it turns out, these traditional de!nitions are equivalent to our de!nition of 
G-length. Moreover the D-length and G-length of a path are always equal: for any 
path f,
 Df = Gf.

9.4.3  Other properties of D-length for paths and arcs

The properties established in this section parallel the basic properties of path length 
in the traditional, metric-based theory (Blumenthal, 1953; Blumenthal & Menger, 
1970; Busemann, 2005). We note !rst the uniform continuity of length traversed 
along a path: for any D-recti!able path f" [a, b] and [x, y] ⊂ [a, b], Df" [x, y] is uniformly 
continuous in (x, y), nondecreasing in y and nonincreasing in x (see Figure 9.9).

The next issue we consider is the (in)dependence of the D-length of a path on 
the path’s parametrization. The D-length of a path is not determined by its image 
f ([a, b]) alone but by the function f : [a, b] → #. Nevertheless two paths f" [a, b] and 
g" [c, d] with one and the same image do have the same D-length if they are related 
to each other in a certain way. Speci!cally, this happens if f and g are each others’ 
reparametrizations, by which we mean that, for some nondecreasing and onto (hence 
continuous) mapping ϕ : [c, d] → [a, b],

 g (x) = f (ϕ (x)), x ∈ [c, d].

Note that we use a “symmetrical” terminology (each other’s reparametrizations) 
even though the mapping ϕ is not assumed to be invertible. If it is invertible, then it is 
an increasing homeomorphism, and then it is easy to see that Df = Dg. This equality 
extends to the general case (see Figure 9.10).

We de!ne an arc as a path that can be reparametrized into a homeomorphic path. 
In other words, g" [c, d] is an arc if one can !nd a nondecreasing and onto (hence 
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continuous) mapping ϕ : [c, d] → [a, b], such that, for some one-to-one and continu-
ous (hence homeomorphic) function f : [a, b] → #,

 g (x) = f (ϕ (x)),

for any x ∈ [c, d]. It can be shown (by a nontrivial argument) that any path contains 
an arc with the same endpoints and the D-length that cannot exceed the D-length of 

a

b

x
ym

a
b

Figure 9.9 Uniform continuity of length: as x and y get closer to each other, the length of the 
corresponding piece of the path converges to zero.

b

c

d

b
a

a

f

Figure 9.10 The path f on [a, b] can be reparametrized without its length affected into a path 
on [c, d] mapped onto [a, b] by a nondecreasing function ϕ.
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the path (see Figure 9.11). Stated rigorously, let f" [a, b] be a D-recti!able path con-
necting a to b. Then there is an arc g" [a, b] connecting a to b, such that

 g ([a, b]) ⊂ f ([a, b]),

and

 Dg" [a, b] ≤ Df" [a, b],

where the inequality is strict if f" [a, b] is not an arc. This result is important, in par-
ticular, in the context of searching for shortest paths connecting one point to another 
(Section 9.4.4): in the absence of additional constraints this search can be con!ned 
to arcs only.

9.4.4  Complete dissimilarity spaces with intermediate points

A dissimilarity space (#,D) is said to be a space with intermediate points if for any 
distinct a, b one can !nd an m such that m ∉{a, b} and Damb ≤ Dab (see Figure 
9.12). This notion generalizes that of Menger convexity (Blumenthal, 1953, p. 41; 
the term itself is due to Papadopoulos, 2005). If D is a metric, the space is Menger-
convex if, for any distinct a, b, there is a point m ∉{a, b} with Damb = Dab. (The 
traditional de!nition is given for symmetric metrics but it can be easily extended.)

Recall that a space is called complete if every Cauchy sequence in it converges to 
a point. Adapted to (#,D), the completeness means that given a sequence of points 
xn such that
 lim

k
l

k lD
→∞
→∞

=x x 0 ,

there is a point x in # such that

 xn ↔ x.

Figure 9.11 One can remove closed loops from a path and be left with a shorter arc.

a
b

m

a
bm

Figure 9.12 Point m is intermediate to a and b if Damb ≤ Dab. E.g., if D is Euclidean 
distance (right panel), any m on the straight line segment connecting a to b is intermediate 
to a and b.
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Blumenthal (1953, pp. 41–43) proved that if a Menger-convex space is complete 
then a can be connected to b by a geodesic arc, that is, an arc h with Dh = Dab 
(where D is a symmetric metric). As it turns out, this result can be generalized to 
nonmetric dissimilarity functions, in the following sense: in a complete space with 
intermediate points, any a can be connected to any b by an arc f with

 Df ≤ Dab.

See Figure 9.13 for an illustration. It follows that Gab in such a space can be viewed 
as the in!mum of lengths of all arcs connecting a to b. Put differently, in a complete 
space with intermediate points the metric G induced by D is intrinsic, in the tradi-
tional sense of the word.

9.5  Conclusion

Let us summarize. Universal Fechnerian Scaling is a theory dealing with the com-
putation of subjective distances from pairwise discrimination probabilities. The 
theory is applicable to all possible stimulus spaces subject to the assumptions that 
(a) discrimination probabilities satisfy the law of Regular Minimality, and (b) the 
two canonical psychometric increments of the !rst and second kind, Ψ(1) and Ψ(2), 
are dissimilarity functions.

0 1 0 1

0 1 0 1

Figure 9.13 In a complete space with intermediate points any points a and b can be con-
nected by chains whose cardinality increases beyond bounds and the dissimilarity between 
successive elements converged to zero. As a result the chains converge, pointwise and in 
length, to an arc whose length is not greater than Dab.
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A dissimilarity function Dab (where D can stand for either Ψ(1) or Ψ(2)) for pairs 
of stimuli in a canonical representation is de!ned by the following properties:

D1. a ≠ b ⇒ Dab > 0;
D2. Daa = 0;
D3. If Dana′n → 0 and Dbnb′n → 0, then Da′nb′n – Danbn → 0; and
D4.  for any sequence anXnbn, where Xn is a chain of stimuli, DanXnbn → 0 ⇒ 

Danbn → 0.

It allows us to impose on the stimulus space the (generally asymmetric) Fechnerian 
metric Gab, computed as as the in!mum of DaXb across all possible chains 
X inserted between a and b. The overall (symmetric) Fechnerian distance G*ab 
between a and b is de!ned as Gab + Gba. This quantity does not depend on whether 
one uses Ψ(1) or Ψ(2) in place of D.

The dissimilarity D imposes on stimulus space a topology and a uniformity struc-
ture that coincide with the topology and uniformity induced by the Fechnerian met-
ric G (or G*). The metric G is uniformly continuous with respect to the uniformity 
just mentioned. Stimulus space is topologically characterized as a completely nor-
mal space.

The Dissimilarity Cumulation theory can be specialized to arc-connected spaces 
with no additional constraints imposed either on these spaces or on the type of paths. 
We have seen that the path length can be de!ned in terms of a dissimilarity func-
tion as the limit inferior of the lengths of appropriately chosen chains converging to 
paths. Unlike in the classical metric based theory of path length, the converging 
chains generally are not con!ned to inscribed chains only: the vertices of the con-
verging chains are allowed to “jitter and meander” around the path to which they are 
converging. Given this difference, however, most of the basic results of the metric-
based theory are shown to hold true in the dissimilarity-based theory.

The dissimilarity-based length theory properly specializes to the classical one 
when the dissimilarity in question is itself a metric (in fact without assuming that 
this metric is symmetric). In this case the limit inferior over all converging chains 
coincides with that computed over the inscribed chains only. It is also the case that 
the length of any path computed by means of a dissimilarity function remains the 
same if the dissimilarity function is replaced with the metric it induces.

We have considered a class of spaces in which the metrics induced by the dissimi-
larity functions de!ned on these spaces are intrinsic: which means that the distance 
between two given points can be computed as the in!mum of the lengths of all arcs 
connecting these points. We call them spaces with intermediate points, the concept 
generalizing that of the metric-based theory’s Menger convexity.

All of this shows that the properties D3 and D4 of a dissimilarity function rather 
than the symmetry and triangle inequality of a metric are essential in dealing with 
the notions of path length and intrinsic metrics.

In conclusion, it should be mentioned that the notion of dissimilarity and the the-
ory of dissimilarity cumulation has a broader !eld of applicability than just discrimi-
nation functions. Thus, it seems plausible to assume that means or medians of direct 
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numerical estimates of pairwise dissimilarities, of the kind used in Multidimensional 
Scaling (MDS, see, e.g., Borg & Groenen, 1997), can be viewed as dissimilarity val-
ues in the technical sense of the present theory. This creates the possibility of using 
the dissimilarity cumulation procedure as a data-analytic technique alternative to 
(and, in some sense, generalizing) MDS. Instead of nonlinearly transforming dissim-
ilarity estimates Dab into distances of a preconceived kind (usually, Euclidean dis-
tances in a low-dimensional Euclidean space) one can use dissimilarity cumulation 
to compute distances G*ab from untransformed Dab and then see if these stimuli 
are isometrically (i.e., without changing the distances G*ab among them) embed-
dable in a low-dimensional Euclidean space (or another geometric structure with 
desirable properties). This approach can be used even if the dissimilarity estimates 
are nonsymmetric. A variety of modi!cations readily suggest themselves, such as 
taking into account only small dissimilarities in order to reduce the dimensionality 
of the resulting Euclidean representation.

Another line of research links the theory of dissimilarity cumulation with infor-
mation geometry (see, e.g., Amari & Nagaoka, 2000) and applies to the categoriza-
tion paradigm. Here, each stimulus a is characterized by a vector of probabilities 
(a1, …, ak), 

 ai
i

k

=
=

∑ 1
1

,

where ai indicates the probability with which a is classi!ed (by an observer or a 
group of people) into the ith category among certain k > 1 mutually exclusive and 
collectively exhaustive categories. It can be shown, to mention one application, that 
the square root of the symmetrical version of the Kullback–Leibler divergence mea-
sure (Kullback & Leibler, 1951),

 D a b
a
b

i i
i

ii

k

ab ab= = −( )
=

∑DivKL log
1

,

is a (symmetric) dissimilarity function on any closed subarea of the area

 x = …( ) > … > =










=
∑x x x x xk k i

i

k

1 1

1

0 0 1, , : , , , .

The stimuli x can also be viewed as belonging to a (k – 1)-dimensional unit 
sphere, with coordinates x1 , …, xk . The cumulation of Dab leads to the classi-
cal for information geometry spherical metric in any spherically convex area of the 
stimulus space (i.e., an area which with any two stimuli it contains also contains the 
smaller arc of the great circle connecting them). In those cases where the spheri-
cal convexity is not satis!ed (e.g., if the sphere has gaps with no stimuli, or stimuli 
form a discrete set), the computation of the distances along great circles has to be 
replaced with more general computations using !nite chains of stimuli.
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