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a b s t r a c t

Adiscrimination function shows the probability or degreewithwhich stimuli are discriminated from each
other when presented in pairs. In a previous publication [Kujala, J.V., & Dzhafarov, E.N. (2008). Onminima
of discrimination functions. Journal of Mathematical Psychology, 52, 116–127] we introduced a condition
under which the conformity of a discrimination function with the law of Regular Minimality (which
says, essentially, that ‘‘being least discriminable from’’ is a symmetric relation) implies the constancy
of the function’s minima (i.e., the same level of discriminability of every stimulus from the stimulus least
discriminable from it). This condition, referred to as ‘‘well-behavedness,’’ turns out to be unnecessarily
restrictive. In this note we give a significantly more general definition of well-behavedness, applicable to
all Hausdorff arc-connected stimulus spaces. The definition employs the notion of the smallest transitively
and topologically closed extension of a relation. We provide a transfinite-recursive construction for this
notion and illustrate it by examples.

© 2009 Elsevier Inc. All rights reserved.

In Kujala and Dzhafarov (2008) we studied discrimination
functions ψ : X × Y → [0, 1] with the codomain representing
probabilities with which, or degrees to which, x and y are judged
to be different. The domain components, X and Y , represent
stimulus sets in two observation areas (e.g., amplitude values of
tones presented chronologically first and those of tones presented
second). We impose very mild restrictions on these sets: we
assume them to beHausdorff arc-connected topological spaces.1We
assume that ψ is continuous with respect to the product topology
on X × Y .
We say that ψ satisfies the law of Regular Minimality if:

(P1) for some function h : X → Y and all x ∈ X , y ∈ Y ,

y 6= h (x) H⇒ ψ(x, h(x)) < ψ(x, y), (1)
(P2) for some function g : Y → X and all x ∈ X , y ∈ Y ,

x 6= g(y) H⇒ ψ(g(y), y) < ψ(x, y), (2)
(P3) the two functions are each other’s inverses,

g ≡ h−1. (3)

∗ Corresponding author.
E-mail address: ehtibar@purdue.edu (E.N. Dzhafarov).

1 Recall that a space is Hausdorff if any two distinct points in it belong to disjoint
open sets. The arc-connectedness of a Hausdorff spacemeans that any two points in
it belong to an image of a continuous mapping of an interval of reals into the space.

The stimulus h(x) ∈ Y is called the point of subjective equality (PSE)
for x, and for any y ∈ Y , the stimulus g(y) ∈ X is called the PSE for
y. The functions h and g are referred to as the PSE functions (X → Y
and Y → X , respectively).
The function

ω(x) = ψ(x, h(x)) (4)
is called theminimum level function (along the PSE function h).2 It is
easy to see that if ψ is sufficiently ‘‘well-behaved’’ (e.g., if X and Y
are regions ofRn andψ is continuously differentiable) thenRegular
Minimality implies ω(x) ≡ const .3 For stimuli representable by
points in Rn the notion of well-behavedness (which generalizes
the continuous differentiability ofψ) was introduced in Dzhafarov
(2003). In Kujala and Dzhafarov (2008) we generalized it further
to the class of continuous functions on Hausdorff arc-connected
stimulus spaces.4

2 The minimum level function can be equivalently, in the sense of describing the
same graph, defined asψ(g(y), y). The choice makes no difference for our analysis.
3 This is of interest because in empirical data, to the extent they support Regular
Minimality, the minimum level function is not constant, implying that a model
aimed at accounting for both Regular Minimality and the nonconstancy of ω(x)
should generate functions which are not well-behaved (see Dzhafarov, 2003).
4 Kujala and Dzhafarov (2008) also posited that stimulus spaces were first
countable. This was not, strictly speaking, necessary. In the present paper we will
only use the first countability to simplify the description of a certain transfinite-
recursive construction (see footnote 12).
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It turns out, however, that the definition given in Kujala and
Dzhafarov (2008) is unnecessarily restrictive (and its formulation
unnecessarily complicated). As it serves little purpose to analyze
a construction we now consider unsatisfactory, we will instead
simply go ahead and present a significantly more general and
better constructed definition (but all relevant facts and results
from Kujala & Dzhafarov, 2008, will be recapitulated).

1. Preliminaries

We focus on continuous discrimination functions ψ with
homeomorphic PSE functions h. The continuity of ψ , if the latter
satisfies Regular Minimality, does not imply the continuity of h or
h−1 (see Kujala & Dzhafarov, 2008, Section 2.2).5
Let Z denote either X or Y , and p, q ∈ Z be two distinct points.

It is convenient to present an arc6 z : [0, 1] → Z with z(0) = p
and z(1) = q as zqp , to indicate its endpoints and to distinguish
it from points in Z . So we will speak of arcs zqp with points z(t),
t ∈ [0, 1] (of course, the notation zqp itself does not determine
the arc, only its endpoints). To distinguish an arc as a mapping,
zqp : [0, 1] → Z , from its image zqp([0, 1]) in Z , we will denote
the image

[
zqp
]
. Clearly, different arcs zqp and z̃

q
p may have the same

image,
[
zqp
]
=
[̃
zqp
]
.

Given any two arcs xu
′

u : [0, 1] → X and yv
′

v : [0, 1] → Y (with
endpoints u, u′ and v, v′, respectively), the function

ϕ(s, t) = ψ(x(s), y(t)) (5)

is called an arc-parametrized facet (AP-facet, for short) ofψ . Sinceψ
is continuous, ϕ(s, t) is continuous (hence uniformly continuous)
on [0, 1] × [0, 1].
Given an AP-facet ϕ, we use the following notation for finite

differences of the first and second order. For any s, s′, t, t ′ ∈ [0, 1],

11s′ϕ(s, t) = ϕ(s
′, t)− ϕ(s, t),

12t ′ϕ(s, t) = ϕ(s, t
′)− ϕ(s, t),

(6)

with the superscripts referring to the position of the arguments
changed. Analogously,

112(s′,t ′)ϕ(s, t) = 11s′1
2
t ′ϕ(s, t) = 1

2
t ′1

1
s′ϕ(s, t)

= ϕ(s′, t ′)− ϕ(s′, t)− ϕ(s, t ′)+ ϕ(s, t). (7)
Another notation convention: we use double arrows (s′, t ′) ⇒
(s, t) to indicate that s′ and t ′ approach, respectively, s and t from
the same side. Specifically:

(s′, t ′) ⇒ (s, t)± means one of the two: s
′
→ s+ and t ′ → t+,

s′ → s− and t ′ → t−,
(s′, t ′) ⇒ (s, t) means s′ → s and t ′ → t and (s′ − s)(t ′ − t) ≥ 0.

(8)

The definition below is unchanged from Kujala and Dzhafarov
(2008, the motivation for this definition can be found on p. 125).
This is an intermediate concept, needed to formulate the notion
(generalized from Kujala & Dzhafarov, 2008) of a continuous
discrimination function well-behaved with respect to the PSE
function h.

5 The continuity of h and h−1 had been part of the original formulation of Regular
Minimality (in Dzhafarov, 2002, 2003) but the formulation was made more general
(referring to any bijective h) in subsequent publications. In most of these later
publications h is transformed into an identity function by means of a so-called
canonical transformation of ψ . We adopt a compromise approach in which Regular
Minimality is formulated in complete generality and the homeomorphic nature of
the PSE function h is stipulated additionally.
6 We define an arc z as a function which is either a homeomorphism from [0, 1]
to a subset of Z or a constant mapping from [0, 1] to a singleton in Z (the reason for
including the latter case is simply to make each point of Z arc-connected to itself).

Definition 1. Given a continuous function ψ and a pair of arc
images,

[
xu
′

u

]
and

[
yv
′

v

]
, we say that the restrictionψ |

[
xu
′

u

]
×

[
yv
′

v

]
of ψ is well-behaved on

[
xu
′

u

]
if, for some parametrizations7 xu

′

u :

[0, 1] →
[
xu
′

u

]
and yv

′

v : [0, 1] →
[
yv
′

v

]
, the resulting AP-facet ϕ of

ψ has the following properties:

(R1) for all (s, t) ∈ [0, 1] × [0, 1] except for an at most
denumerable set,

lim sup
(s′,t ′)⇒(s,t)

∣∣∣∣∣1
12
(s′,t ′)ϕ(s, t)

s′ − s

∣∣∣∣∣ <∞; (9)

(R2) for almost all s ∈ [0, 1] and almost all t ∈ [0, 1],8

lim
(s′,t ′)⇒(s,t)±

112
(s′,t ′)ϕ(s, t)

s′ − s
= 0, (10)

where the choice of + or − may be different for different
(s, t).

The definition of a restriction ψ |
[
xu
′

u

]
×

[
yv
′

v

]
well-behaved on[

yv
′

v

]
is obtained by replacing the quotient in (9) and (10) with

112
(s′,t ′)ϕ(s, t)

t ′ − t
.

In Kujala and Dzhafarov (2008, Lemma 5) it was shown that
for the well-behavedness on

[
xu
′

u

]
the parametrization yv

′

v :

[0, 1] →
[
yv
′

v

]
is irrelevant and can be chosen arbitrarily

(and, symmetrically, for the well-behavedness on
[
yv
′

v

]
the

parametrization xu
′

u of
[
xu
′

u

]
is irrelevant). This is apparent from

inspecting (9) and (10).

2. Well-behavedness of discrimination functions: A new defi-
nition

Definition 2. Given a continuous discrimination function ψ with
a homeomorphic PSE function h, let us define E(ψ, h) as the set of
all pairs (u, u′) in X × X such that for some arc xu

′

u , the restriction

ψ |
[
xu
′

u

]
× h

([
xu
′

u

])
is well-behaved on at least one of the two arc

images,
[
xu
′

u

]
or h

([
xu
′

u

])
.9

In Kujala and Dzhafarov (2008, Theorem 5) we showed that if
(u, u′) ∈ E(ψ, h), then

ω(u) = ψ(u, h(u)) = ψ(u′, h(u′)) = ω(u′),

with the obvious implication: if E(ψ, h) = X × X , then the
minimum level functionω(x) = ψ(x, h(x)) is constant.Wedefined

7 A parametrization of an arc image [x] is simply a choice of an arc x : [0, 1] → X
whose image is [x].
8 ‘‘Almost all’’ here refers to the Lebesgue measure on [0, 1]. Note that the
condition is more restrictive than ‘‘for almost all (s, t) in [0, 1] × [0, 1]’’.
9 Throughout this paper, the reference to ψ with a homeomorphic PSE function
implies that ψ satisfies Regular Minimality. Consequently, the notation E(ψ, h)
always implies that ψ is such a function. Note that the choice of X × X over
Y × Y in the definition of E(ψ, h) is arbitrary: we could very well consider instead
E(ψ, h−1) as the set of (v, v′) ∈ Y × Y such that for some arc yv

′

v , the restriction

ψ |h−1
([
yv
′

v

])
×

[
yv
′

v

]
is well-behaved on

[
yv
′

v

]
or on h−1

([
yv
′

v

])
.
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then a well-behaved discrimination function ψ as one for which
E(ψ, h) = X × X . As mentioned above, this formulation is
unnecessarily restrictive.10 The theorem below shows that rather
than identifying X × X with E(ψ, h) itself it is sufficient to adopt
the following definition.

Definition 3. A continuous discrimination function ψ is well-
behaved with respect to its homeomorphic PSE function h if X ×
X coincides with the transitive–topological closure of E(ψ, h),
i.e., with the smallest transitively closed and topologically closed
subset of X × X containing E(ψ, h).11

The set E(ψ, h) itself is generally neither transitively nor
topologically closed, because of which it may very well be a proper
subset ofX×X . At the same time, the transitive–topological closure
of E(ψ, h) exists and is unique. Indeed, let U be a collection of all
transitively and topologically closed subsets of X × X containing
E(ψ, h) (clearly, X × X ∈ U). Then the intersection

⋂
U is the

the transitive–topological closure of E(ψ, h), as it clearly contains
E(ψ, h), is transitively and topologically closed, and is contained in
any member of U.

Theorem 1. If a continuous discrimination function ψ with a
homeomorphic PSE function h is well-behaved, then the minimum
level function ω(x) is constant.

Proof. Let

A = {(u, u′) ∈ X × X : ω(u) = ω(u′)}.

Obviously, A is transitively closed. It is also topologically closed
since X × X \ A is open: indeed, if (u, u′) ∈ X × X \ A, i.e.,
ω(u) 6= ω(u′), then the continuity of ω implies that some open
neighborhood of (u, u′) should liewithin X×X \A. Since E(ψ, h) ⊂
A, it follows that A contains the transitive–topological closure of
E(ψ, h). But by Definition 3, this transitive–topological closure is
X × X . �

Separately taken, the operations of transitive closure and
topological closure of E(ψ, h) have transparent ‘‘procedural’’
meanings. To effect the transitive closure,we simply add to E(ψ, h)
the pair (u, u′′) every time we find (u, u′) and (u′, u′′) in E(ψ, h).
To effect the topological closure, we add to E(ψ, h) all its limit
points in X × X . Definition 3 and Theorem 1 do not elucidate,
however, the ‘‘procedural’’ meaning of the transitive–topological
closure of E(ψ, h): generally, a transitive (topological) closure of
a subset of X × X will not preserve its topological (respectively,
transitive) closedness. We will describe therefore a construction
of the transitive–topological closure of E(ψ, h) by means of a
transfinite recursion which employs alternating operations of
topological and transitive closure. The construction is confined to
first countable spaces X and Y (in addition to their being Hausdorff
and arc-connected).12

10 It turns out that the original definition is equivalent to the following
formulation: either for each (u, u′) there is an arc image

[
xu
′

u

]
⊂ X such that

ψ |
[
xu
′

u

]
× h

([
xu
′

u

])
is well-behaved on

[
xu
′

u

]
; or for each (u, u′) there is an arc

image
[
xu
′

u

]
⊂ X such that ψ |

[
xu
′

u

]
× h

([
xu
′

u

])
is well-behaved on h

([
xu
′

u

])
.

11 A relation E ⊂ X×X is called transitively closed if the conjunction of (u, u′) ∈ E
and (u′, u′′) ∈ E implies (u, u′′) ∈ E.
12 The first countability of a topological space Z means that, for any subset Z ′ ⊂ Z
and any z ∈ Z , Z ′ must contain a sequence zn → z if z is a limit point of Z ′ (i.e.,
every open neighborhood of z intersects Z ′). The first countability is not essential
for our construction, but by adopting this restriction we ensure that the transfinite
recursion to be described has an identifiable termination point in the set of ordinal
numbers: namely, the recursion is guaranteed to produce the transitive–topological
closure of E(ψ, h) before reaching the first uncountable ordinal (see below).

3. Ordinal numbers: A primer

Webegin by recalling the notion of ordinal numbers, or ordinals
(see, e.g., Natanson, 1964b, Chapter 14; Wolf, 2005, Section 2.4).
Natural numbers 0, 1, 2, 3, . . . are ordinals. They can be thought
of as nested sets: 0 = ∅, 1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2},
etc. The set {0, 1, 2, 3, . . .} is the first transfinite ordinal, ω, and
{0, 1, 2, 3, . . . , ω} is the next ordinal, ω + 1. One continues in
this manner to form ω + 2, ω + 3, . . . , ω + ω = ω · 2, . . . , ω ·
3, . . . , ω2, . . . , ω3, . . . , ωω, . . . , ωω

ω
, etc.

Stated rigorously, a set γ is an ordinal if it has the following
property: elements of γ are sets, and if β ∈ γ and α ∈ β , then
α ⊂ β ⊂ γ . To mention some basic facts about ordinals: (1) the
empty set is an ordinal (denoted 0); (2) every element of an ordinal
is an ordinal; (3) for any two distinct ordinals α, β , either α ∈ β or
β ∈ α; (4) an ordinal γ is well-ordered by ∈, i.e., every nonempty
subset Γ of γ contains an ordinal γmin such that β 6∈ γmin for all
β ∈ Γ ; (5) for every set Γ of ordinals,

⋃
Γ is an ordinal; (6) if γ is

an ordinal, then γ ∪ {γ } is an ordinal.
The ordinal justmentioned, γ ∪{γ }, is called a successor ordinal:

it is written as γ + 1 and γ is called its predecessor. An ordinal
is called a limit ordinal if it has no predecessor, i.e., cannot be
presented as γ + 1 for some ordinal γ . A limit ordinal is the union
of all its elements.
It is common to write α < β in place of α ∈ β .
In this paperwewill only need to deal with the ordinals that are

countable sets (see footnote 12). The property of these countable
ordinalswhich is critical for us is that for any sequence of countable
ordinals one can find a countable ordinal which is strictly greater
than all elements of the sequence. The set of all countable ordinals
is an uncountable ordinal, ω1, and in fact it has the smallest
uncountable cardinality.
Theorems involving ordinals are often proved by transfinite

induction: if some statement holds for 0, and if, for any ordinal β
(or any β below some ordinal γ ), whenever we assume that the
statement holds for all ordinals α < β it also holds for β , then
the statement holds for all ordinals (respectively, all ordinals below
γ ). A property can be defined by means of transfinite recursion: if
it is defined for 0, and if, for any ordinal β (below some ordinal
γ ), whenever we assume that it has been defined for all ordinals
α < β it can also be defined for β , then the property is defined
for all ordinals (below γ ). Within the induction or recursion step,
it is usually convenient to handle the successor and limit cases
separately.

4. Construction of transitive–topological closure

To provide the intuition for the construction of the transi-
tive–topological closure of E(ψ, h), denote E0 = E(ψ, h). We
know that if (u, u′) ∈ E0, then ω(u) = ω(u′). This does not mean,
of course, that ω(u) 6= ω(u′) if (u, u′) is not in E0. Thus, if (u, u′) is
the limit of a sequence (un, u′n) each element of which is in E

0, then
ω(u) = ω(u′) as a consequence of ω(un) = ω(u′n) for every n. In-
sofar as the constancy of ω is concerned therefore, we can replace
E0 with its topological closure E0. This is not, however, the best
we can do. Suppose that (u, u′) 6∈ E0 but one can find a sequence
u = u0, u1, . . . , uk = u′ with (ui−1, ui) ∈ E0 for all i = 1, . . . , k.
Thenω(u) = ω(u′) by the transitivity of equality.We can therefore
replace E0 with its transitive closure tcE0 (i.e., the set of the pairs
connectable by finite chains whose successive links belong to E0).
Let us denote this transitive closure tcE0 by E1.
It is clear that we still have not done our best in determining all

pairswithω(u) = ω(u′): if (u, u′) 6∈ E1 but some sequence (un, u′n)
in E1 converges to (u, u′), then ω(u) = ω(u′), leading us to form

Please cite this article in press as: Kujala, J. V., & Dzhafarov, E. N. A new definition of well-behaved discrimination functions. Journal of Mathematical Psychology (2009),
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the topological closure E1. But then it is possible that (u, u′) 6∈ E1
but one can find a sequence u = u0, u1, . . . , uk = u′ with all links
(ui−1, ui) ∈ E1, implying again ω(u) = ω(u′). This leads us to the
transitive closure tcE1, denoted E2. We can continue this process
(topological closure–transitive closure–topological closure–...) and
form the successive sets

E1 ⊂ E2 ⊂ E3 ⊂ · · · ⊂ X × X .

Let Eω be the union of these E-sets. It can be shown (see
Section 5) that Eω may very well not be topologically closed. And
if we close it, forming Eω , the latter is not necessarily transitively
closed. The transitive closure tcEω requires from us to go beyond
natural numbers to index it: Eω+1. This leads to the transfinite
continuation of the process, forming

Eω+1 ⊂ Eω+2 ⊂ Eω+3 ⊂ · · · ⊂ X × X .

In this way we obtain sets indexed by all countable ordinals.
Denoting the union of all these E-sets by U we finally reach the
desired generality:U can be shown (Theorem2 below) to be closed
both topologically and transitively (within any first countable
Hausdorff space X). The formal definition is as follows (note that it
is formulated for an arbitrary relation E0, not necessarily E(ψ, h)).

Definition 4 (By Transfinite Recursion). Let E0 ⊂ X × X . Let β be a
countable ordinal, and let the sets Eα ⊂ X × X have been defined
for all ordinals α < β . Then, if β has a predecessor, define

Eβ = tcEβ−1, (11)

and if β is a limit ordinal, define

Eβ =
⋃
α<β

Eα, (12)

where tc denotes transitive closure. Denoting by Ω the set of all
countable ordinals, we define

U =
⋃
β∈Ω

Eβ . (13)

In particular, if E0 = E(ψ, h) of Definition 2, then the final
product of this transfinite recursion, U , can be denoted U(ψ, h).

Remark 1. One might wonder about the significance of starting
the process by forming first the topological closure of E0 rather
than its transitive closure. Would the outcome U of the process be
different if, starting with E0

•
= E0, the E-set for a successor ordinal

β was defined as Eβ
•
= tcEβ−1• rather than Eβ = tcEβ−1 (with the

rest of Definition 4 unchanged, except for the ‘‘dotted’’ notation)?
The answer is it would make no difference. The identity

U =
⋃
β∈Ω

Eβ =
⋃
β∈Ω

Eβ
•

is an immediate consequence of the fact that{
Eα
•
⊂ Eα ⊂ Eα+1

Eα ⊂ tcEα
•
⊂ Eα+1
•

(14)

for all countable ordinals α. To prove (14), observe that it holds
for α = 0, and assume that it holds for all α < β . If β has a
predecessor, then (14) holds for β since it holds for β − 1: from

Eβ−1
•
⊂ Eβ−1 we derive Eβ

•
= tcEβ−1• ⊂ tcEβ−1 = Eβ ⊂ Eβ+1, and

from Eβ−1 ⊂ tcEβ−1
•
we derive Eβ = tcEβ−1 ⊂ tctcEβ−1• = tcEβ

•
⊂

Eβ+1
•
. If β is a limit ordinal, then Eβ =

⋃
α<β E

α
=
⋃
α<β E

α
•
= Eβ
•
,

and (14) holds for β trivially. By transfinite induction, (14) holds
for all countable ordinals.

The following properties of Eα are easily established and given
here without proof.

Lemma 1. If α < β , then

Eα ⊂ Eα ⊂ tcEα ⊂ Eβ ⊂ U .

Note that for α < β it is possible that Eα = Eβ (in which case
Eα = U). In particular, it may be true for some functions ψ and h
that E0 itself is both topologically and transitively closed, in which
case E0 = E(ψ, h) = U(ψ, h). Even then, however, Eα is well-
defined (and equal to E0) for any countable ordinal α.

Theorem 2. U is the transitive–topological closure of E0.

Proof. To see that U is transitively closed, observe that if (u, u′) ∈
Eα and (u′, u′′) ∈ Eβ for some countable ordinals α < β , then, by
Lemma 1, (u, u′), (u′, u′′) ∈ Eβ . This implies (u, u′′) ∈ Eβ ⊂ U
since Eβ is transitively closed.
To see that U is topologically closed, observe that, X being first

countable, (u, u′) ∈ X × X is a limit point of U if and only if there
is a sequence (un, u′n) → (u, u′) as n → ∞, with all (un, u′n)
in U . Then there is a sequence αn of countable ordinals such that
(un, u′n) ∈ E

αn , and, as for any sequence of countable ordinals,
there is a countable ordinal β exceeding all αn. This means that
(un, u′n) ∈ E

β for all n, whence (u, u′) ∈ Eβ ⊂ U .
We show now by transfinite induction that U is contained in

any topologically and transitively closed relation U ′ containing E0.
Let β be a countable ordinal, and let Eα ⊂ U ′ for all ordinals α < β .
Then, if β has a predecessor, Eβ−1 ⊂ U ′ because U ′ is topologically
closed, and Eβ = tcEβ−1 ⊂ U ′ because U ′ is transitively closed.
If β is a limit ordinal, then Eβ =

⋃
α<β E

α
⊂ U ′. By transfinite

induction, Eα ⊂ U ′ for all countable ordinals α, whence U ⊂ U ′.
�

5. Two examples

In this concluding section we show, by examples, that Defini-
tion 4 is not excessively general. Our first example demonstrates
that for every (countable) ordinal β there is an equivalence (hence
transitively closed) relation E0 ⊂ X × X such that Eβ is a topologi-
cally closed equivalence relation (and is therefore equal to U), but
Eα is not topologically closed for any α < β . The second example
shows that there is an equivalence relation E0 such that Eα is not
topologically closed for any countable α: the topological closure
is only achieved when all countable ordinals have been exhausted
and one has formed U .
In the following the terms ‘‘closed’’ and ‘‘closure’’ always refer

to topological closedness; transitive closedness is always specified
explicitly.
The relations E, Eα , andU in these examples need not be related

to well-behavedness, although we make sure that they can be, by
considering spaces which are Hausdorff, arc-connected, and first
countable.

5.1. Segmentwise relations

We need some preliminaries. Given an interval of reals I =
|p, q| (we use | to indicate that the endpoints may be excluded
or included, no matter which) endowed with the conventional
topology, a binary relation E on I is called a segmentwise relation if it
is an equivalence relation whose quotient set I/E (of equivalence
classes) contains only positive-length intervals (open, half-open,
or closed) and, possibly, the endpoints [p, p] and/or [q, q]. Clearly,
if (x, y) ∈ E then (a, b) ∈ E for all a, b between x and y. For
I ′ = |a, b| ⊂ I we denote the restriction of E to I ′ by E(I ′).
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Obviously, E(I ′) is a segmentwise relation on I ′, with the quotient
set I ′/E(I ′) = {A ∩ I ′ : A ∈ I/E and A ∩ I ′ 6= Ø}. We can apply
Definition 4 with X = I to E = E0 to obtain relations Eα for all
countable ordinals; analogously, we can put X = I ′ and E(I ′) = E0
to obtain relations E(I ′)α .
The following properties of segmentwise relations are rather

obvious on a moment’s consideration, and we present them
without detailed proofs.

Lemma 2. If E is a segmentwise relation on I, and I ′ is an interval in
I, then
(i) the closure of E is obtained segmentwise,13

E =
⋃
A∈I/E

A× A; (15)

(ii) E is closed if and only if I/E consists of {I} alone;
(iii) for any countable ordinal α, Eα is a segmentwise relation on I;
(iv) for any countable ordinal α,

E(I ′)α = Eα(I ′). (16)

Proof. (Outlined.) Let (x, y) ∈ I × I (x ≤ y) and let some sequence
(xn, yn) ∈ E converge to (x, y). To prove (i) we have to show that
I/E contains an interval whose closure contains both x and y. Let
x ∈ |a1, a2| ∈ I/E, y ∈ |b1, b2| ∈ I/E, a1 < b2. We exclude the
possibilities (x < a2, y > a2) and (x < b1, y > b1) as contradicting
(xn, yn) ∈ E. Hence either y = b1 = a2 (implying x, y ∈ [a1, a2]),
or x = a2 = b1 (implying x, y ∈ [b1, b2]), or else x = a2 < b1 = y.
In the latter case, (xn, yn) ∈ E only if |a2, b1| ∈ I/E, and then
x, y ∈ [a2, b1].
It follows from (i) that E is closed if and only if all intervals

in I/E are closed. Deny (ii) and assume that I/E contains more
than one equivalence interval. Since these intervals do not overlap,
the set obtained by removing from I their interiors is perfect, and
has therefore the power of the continuum (see, e.g., Natanson,
1964a, Chapter 2). But the set of the intervals’ endpoints is at most
denumerable, so the set of the closed intervals comprising I/E
cannot cover I . This contradiction proves (ii).
Statement (iii) is proved by transfinite induction. It is true for

α = 0. For E1 = tcE, observe that the transition E → tcE amounts
to replacingwith |a, b| every set of intervals |ti, ti+1| ∈ I/Ewith the
followingproperty: their endpoints form twoatmost denumerable
sequences of points t0 < t1 < t2 < · · · and t0 > t−1 >
t−2 > · · · in |a, b| with inf ti = a, sup ti = b, and |a, b| does
not share an endpoint with any other member of I/E. Clearly, such
replacements create intervals partitioning I , and E1 is therefore
a segmentwise relation. Moreover, E = E0 ⊂ E1. Assume now
that for all pairs of ordinals α < α′ below β , Eα is a segmentwise
relation and Eα ⊂ Eα

′

. If β is a successor ordinal, then we apply
to the transition Eβ−1 → Eβ = tcEβ−1 the above argument for
E → tcE. If β is a limit ordinal, it is easy to see that Eβ =

⋃
α<β E

α

is an equivalence relation, that every equivalence class in I/Eβ is
an interval, and that every member of I/Eα for every α < β is
contained within such an interval.
To prove (iv) we use transfinite induction again. Observe that

E(I ′)0 = E0(I ′) = E(I ′), and assume that (iv) holds for all ordinals
α < β . If β is a limit ordinal, the induction step is obvious. If β is a
successor ordinal, Eβ = tcEβ−1, and we observe that |a, b| ⊂ I ′
belongs to I ′/Eβ(I ′) if and only if there are intervals |ti, ti+1| ∈
I ′/Eβ−1(I ′)with the properties stated in the proof of (iii). But then
|ti, ti+1| ∈ I ′/E(I ′)β−1, and the properties in question hold if and
only if |a, b| belongs to I ′/E(I ′)β . �

13 Note that the closure E is generally not a segmentwise relation, as it need not
be an equivalence relation.

5.2. Example: Construction of U may be completed at any countable
ordinal

Definition 5. Let X = ]0, 1]. Define E0 as the equivalence relation
X×X . Assuming that relations Eα have been defined for all ordinals
below a countable ordinal β , define Eβ as follows. If β has a
predecessor, Eβ is the equivalence with the quotient set

X/Eβ =
∞⋃
k=1

2−k(1+ X/Eβ−1), (17)

where the addition of 1 and multiplication by 2−k applies to all
intervals in X/Eβ−1 pointwise. If β is a limit ordinal, we choose
some increasing sequence α1 ≤ α2 ≤ α3 ≤ · · · < β of ordinals
converging to β and define Eβ as the equivalencewith the quotient
set

X/Eβ =
∞⋃
k=1

2−k(1+ X/Eαk), (18)

using the same notation as in (17).

Eα is clearly a segmentwise relation on X = ]0, 1]. Endowing X
with the conventional topology (which makes X a Hausdorff, first
countable, arc-connected space) we can apply Definition 4 to Eα to
obtain Eλα and Uα for all countable ordinals λ. The theorem below
states that Eλα = Uα for all λ ≥ α but that Eλα is not closed (and
hence not equal toUα) for anyλ < α.Weneed two auxiliary results
first.

Lemma 3. Let E be a segmentwise relation on an interval I, and let
|a, b] ∈ I/E for some a < b. If, for some countable ordinal α, I/Eα
does not contain an interval with b as its right endpoint, then there
is the smallest ordinal with this property, α′. It is a successor ordinal,
such that, for some c > b,

]b, c| ∈ I/Eα
′
−1. (19)

Proof. Since |a, b] is contained in some element of I/Eβ for every
β , the interval of I/Eβ containing b can only be of the forms |b−s, b]
or |b − s, b + t|, s, t > 0. I/Eα contains an interval of the latter
type, and I/E0 does not. So there must be the smallest ordinal,
α′ > 0, such that I/Eα

′

contains such an interval. α′ is not a limit
ordinal, because then it would follow from Definition 4 that this
property also holds for someα′′ < α′. Henceα′−1 exists, and then
I/Eα

′
−1 contains an interval |b − s, b]. The property (19) follows

from the fact that I/Eα
′

contains an interval |b− s, b+ t|which, by
Definition 4 and Lemma 2(i), should include the union of [b− s, b]
and some [b, b+ t ′], t ′ ≤ t . �

Lemma 4. Let X = ]0, 1] and Eα be as in Definition 5, and let Xk =
]2−k, 2−k+1], k = 1, 2, . . .. For any two countable ordinals µ, β ,

Xk/E
µ
β (Xk) = 2

−k(1+ X/Eµβ−1) (20)

if β has a predecessor, and

Xk/E
µ
β (Xk) = 2

−k(1+ X/Eµαk) (21)

if β is a limit ordinal and αk is as in Definition 5.

Proof. For a successor β , Xk/Eβ(Xk) = 2−k(1 + X/Eβ−1) by
Definition 5, whence Xk/Eβ(Xk)µ = 2−k(1 + X/Eµβ−1). By
Lemma 2(iv) Xk/Eβ(Xk)µ = Xk/E

µ
β (Xk), and the statement follows.

The statement for a limit β analogously follows from Xk/Eβ(Xk) =
2−k(1+ X/Eαk). �

We are ready now to prove the main result for our example.
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Theorem 3. Let X = ]0, 1] and Eα be as in Definition 5. For any two
countable ordinals α, λ,

(i) if λ < α, then X/Eλα is not closed;
(ii) if λ ≥ α, then X/Eλα is closed.

Proof. By Lemma2(ii),X/Eλα is closed if and only if it consists of {X}
alone. We prove (i) by showing that with λ < α, ]0, x| 6∈ X/Eλα for
any x > 0. For α = 0 the statement holds trivially. Let it hold for all
α below a countable ordinal β > 0. To prove it for β , assume the
contrary: for some λ < β , ]0, x| ∈ X/Eλβ for some x. As 2

−k
∈ ]0, x|

for all sufficiently large k, we can apply Lemma 3 to b = 2−k for
any such k and find a successor ordinal λk ≤ λ such that X/E

λk−1
β

contains an interval ]2−k, 2−k + δk|. Denoting Xk = ]2−k, 2−k+1], it
then follows that Xk/E

λk−1
β (Xk) contains an interval ]2−k, 2−k+δ′k|.

We use Lemma 4 with λk − 1 replacing µ to obtain

Xk/E
λk−1
β (Xk) = 2−k(1+ X/E

λk−1
β−1 )

or

Xk/E
λk−1
β (Xk) = 2−k(1+ X/Eλk−1αk

)

according as β is a successor or limit ordinal. We see that X/Eλk−1β−1

or X/Eλk−1αk , respectively, contains ]0, 2kδ′k|, for all sufficiently large
k. But this contradicts the induction hypothesis because, if β has a
predecessor, λk − 1 ≤ λ − 1 < β − 1, and if β is a limit ordinal,
then for all sufficiently large k, αk > λ > λk − 1 (where αk < β ,
i.e., we are within the domain of the induction hypothesis).
It is sufficient to prove (ii) for λ = α (if Eαα = X

2 then Eλα = X
2

for any λ > α by Lemma 1). We observe that Eαα = X
2 for α = 0

and then, assuming this for all α below a countable ordinal β , we
show that Eββ = X

2. For a successor β , by (20) with µ = β − 1,

Xk/E
β−1
β (Xk) = 2−k(1+ X/E

β−1
β−1 ),

and we see that Xk/E
β−1
β (Xk) = {Xk}, since X/E

β−1
β−1 = {X} by the

induction hypothesis. It follows that Eβ−1β ⊃ X2k , whence E
β

β ⊃

X2k = Xk
2
, for all k. For a limit β , (21) with µ = αk yields

Xk/E
αk
β (Xk) = 2

−k(1+ X/Eαkαk ),

and we see that Xk/E
αk
β (Xk) = {Xk} (since X/E

αk
αk = {X} by the

induction hypothesis) and Eαkβ ⊃ X
2
k . Again, it follows that E

β

β ⊃

X2k = Xk
2
, for all k. In either case we have

Eββ ⊃ tc
∞⋃
k=1

Xk
2
= X2,

since Eββ is transitively closed. �

This concludes our first example.

5.3. Example: Construction of U may require all countable ordinals

In the second example we choose X to be the closed (in the
conventional sense) unit disk in R2 centered at O = (0, 0). We
impose a topology on X as follows. For each unit vector v attached
to O, each point sv, s ∈ ]0, 1], has a local basis given by the sets

{tv : t ∈ ]s− r, s+ r[∩]0, 1]},

for all r > 0. The origin O has its local basis given by all open
disks centered at the origin. It is easy to check that this topology
is Hausdorff, first countable, and arc-connected, that every radius
Lv = {tv : t ∈ ]0, 1]} is homeomorphic to ]0, 1] (with the usual

topology), and thatO = (0, 0) is a limit point for every Lv. The setS1
of the unit vectors v has the power of the continuum, while the set
Ω of all countable ordinals has the smallest possible uncountable
power. Hence there exists a surjectionm : S1 → Ω . Let

E∗ = {(O,O)} ∪
⋃
v∈S1
{(sv, tv) : (s, t) ∈ Em(v)}, (22)

where Em(v) is as in Definition 5. Obviously E∗ is an equivalence
relation, and its restriction to any Lv,

E(Lv) = {(sv,tv) : (s, t) ∈ Em(v)},

is (homeomorphic to) a segmentwise relation. Using Definition 4,
we can form Eλ

∗
’s and U∗. By Theorem 2, U∗ is transitively and

topologically closed. We will show now that this property is not
attained by any Eλ

∗
.

Theorem 4. Eλ
∗
is not closed for any countable ordinal λ.

Proof. By an obvious analogue of Lemma 2(iv), the restriction of
Eλ
∗
to Lv is

Eλ
∗
(Lv) = E(Lv)λ = {(sv,tv) : (s, t) ∈ Eλm(v)}. (23)

It follows that Eλ
∗
is not closed for any λ: otherwise we would have

E∗(Lv)λ closed in Lv×Lv for someλ and all v, which, by Theorem3(i),
cannot be true if one chooses vwithm(v) > λ. �

6. Conclusion

We have developed a radical generalization of the notion
of well-behaved discrimination functions (Definition 3). This
generalization is achieved by applying a transfinite series of
topological and transitive closures (Definition 4 and Theorem 2) to
the well-behavedness relation (Definitions 1 and 2) as introduced
in Kujala and Dzhafarov (2008). The conclusion arrived at in
that paper remains unchanged in our generalized treatment: if
a discrimination function (subject to Regular Minimality) is well-
behaved with respect to its homeomorphic PSE function, then its
minimum level function is constant (Theorem 1).
In Kujala and Dzhafarov (2008) it has been mentioned that

this conclusion is not entirely topological, in the sense that
it does not hold for all continuous discrimination functions
with homeomorphic PSEs. In fact, it has been shown (Kujala &
Dzhafarov, 2008, Lemma 3) that for any homeomorphism h : X →
Y and any continuous (nonconstant) ω : X → [0, 1] one can
find a continuous discrimination function ψ which has h as its
PSE function and ω as its minimum level function. It is important
to realize, however, that the notion of well-behavedness and the
conclusion in question (Theorem 1) are nevertheless topological in
the traditional sense of the word: they are invariant with respect to
all homeomorphic transformations of the sets X and Y which define
the discrimination function’s domain. This invariance is due to the
fact that Definition 1 which forms the departure point for our
development is formulated in terms of arc-parametrized facets
(5) which do not change under homeomorphic transformations
X → X∗, Y → Y ∗. Indeed, the discrimination function ψ(x, y)
then transforms into ψ∗(x∗, y∗) such that ψ∗(x∗, y∗) = ψ(x, y)
whenever x 7→ x∗ and y 7→ y∗. Given arcs x(s), y(t) in (5), the
transformed arcs x∗(s), y∗(t) are obtained by s 7→ x 7→ x∗ and
t 7→ y 7→ y∗, whence ψ∗(x∗(s), y∗(t)) = ψ(x(s), y(t)) = ϕ(s, t).
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