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Probability, Random Variables, and Selectivity
Ehtibar Dzhafarova and Janne Kujalab

1.1 What is it about?

This chapter is about systems with several random outputs whose joint

distribution depends on several inputs. More specifically, it is about selec-

tiveness in the dependence of random outputs on inputs. That is, we are

concerned with the question of which of the several outputs are influenced

by which of the several inputs. A system can be anything: a person, animal,

group of people, neural network, technical gadget, two entangled electrons

running away from each other. Outputs are responses of the system or out-

comes of measurements performed on it. Inputs are entities upon whose

values the outputs of the system are conditioned. Even if inputs are random

variable in their own right, the outputs are being conditioned upon every

specific stimulus. Inputs therefore are always deterministic (not random)

entities insofar as their relationship to random outputs is concerned.

Example 1.1 In a double-detection experiment, the stimulus presented in

each trial may consist of two flashes, say, right one and left one, separated

by some distance in visual field. Suppose that each flash can have one of

two contrast levels, one zero and one (slightly) above zero. These contrasts

play the role of two binary inputs, that we can call λleft and λright (each one

with values present/absent). The inputs are used in a completely crossed

experimental design: that is, the stimulus in each trial is described by one

of four combinations of the two inputs:
(
λleft = present, λright = present

)
,(

λleft = present, λright = absent
)
, etc. In response to each such a combina-

tion (called a treatment), the participant is asked to say whether the left

flash was present (yes/no) and whether the right flash was present (yes/no).

These are the two binary outputs, we can denote them Aleft and Aright (each

a Purdue University, USA
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2 Probability, Random Variables, and Selectivity

with two possible values, yes/no). The outputs are random variables. The-

oretically, they are characterized by joint distributions tied to each of four

treatments: (
λleft = i, λright = j

)
Aright = yes Aright = no

Aleft = yes pyes,yes pyes,no

Aleft = no pno,yes pno,no

where i, j stand for “present” or “absent” each. Suppose now that the ex-

perimenter hypothesizes that the response to the left stimulus depends only

on the contrast of the left stimulus, and the response to the right stimulus

depends only on the contrast of the right stimulus,

λleft

��

λright

��
Aleft Aright

This hypothesis can be justified, for example, by one’s knowledge that the

separation between the locations of the flashes is too large to allow for inter-

ference, and that subjectively, nothing seems to change in the appearance of

the left stimulus as the right one is switched on and off, and vice versa. The

meaning of this hypothesis is easy to understand if the two random outputs

are known to be stochastically independent, which in this case means that,

for every one of the four treatments,

pyes,yes = Pr
(
Aleft = yes, Aright = yes

)
= Pr

(
Aleft = yes

)
Pr
(
Aright = yes

)
.

In this case the test of the selectiveness consists in finding out if the distri-

bution of Aleft, in this case defined by Pr
(
Aleft = yes

)
, remains unchanged

as one changes the value of λright while keeping λleft fixed, and analogously

for Aright. The experimenter, however, is likely to find out that stochastic

independence in such an experiment does not hold: for some, if not all of

the four treatments,

pyes,yes 6= Pr
(
Aleft = yes

)
Pr
(
Aright = yes

)
.

Now the conceptual clarity may be lost. Does the lack of stochastic indepen-

dence invalidate the hypothesis that the outputs are selectively influenced

by the corresponding inputs? Indeed, one might reason that it does, because

if Aleft and Aright are not independent, then Aleft certainly “depends on”

Aright, whence Aleft should also depend on anything Aright depends on (and

this includes λright). But one might also reason that stochastic relationship
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between the two outputs can be ignored altogether. Cannot one declare

that the hypothesis in question holds if one establishes that the marginal

distributions (i.e., Pr
(
Aleft = yes

)
and Pr

(
Aright = yes

)
, taken separately)

are invariant with respect to changes in the non-corresponding inputs (here,

λright and λleft, respectively)? We will see in this chapter that stochastic

relationship must not be ignored, but that lack of stochastic independence

does not by itself rule out selectiveness in the dependence of random outputs

on inputs. �

It is easy to generate formally equivalent examples by trivial modifications.

For instance, one can replace the two responses of a participant with activity

levels of two neurons, determining whether each of them is above or below

its background level. The two locations can be replaced with two stimulus

features (say, orientation and spatial frequency of a grating pattern) that

are hypothesized to selectively trigger the responses from the two neurons.

One can also easily modify any of such examples by increasing the number

of inputs and outputs involved, or increasing the number of possible values

per input or output. Thus, in the example with double-detection, one can

think of several levels of contrast for each of the flashes. Or one can think of

responses being multi-level confidence rating instead of the binary yes/no.

Let us consider a few more examples, however, to appreciate the variety

in the nature of inputs and outputs falling within the score of our analysis.

Example 1.2 Let a very large group of students have to take three ex-

ams, in physics, geometry, and French. Each student prepares for each of

the exams, and the preparation times are classified as “short” or “long” by

some criteria (which may be different for different exams). The three prepa-

ration times serve as the inputs in this example. We denote them by λphysics,

λgeometry, and λFrench (each with possible values short/long). The outputs

are scores the students eventually receive: Aphysics, Ageometry, and AFrench

(say, from 0 to 100% each). The hypothesis to be tested is that preparation

time for a given subject selectively affects the score in that subject,

λphysics

��

λgeometry

��

λFrench

��
Aphysics Ageometry AFrench

To see if this is the case we subdivide the group of students into eight

subgroups, corresponding to the eight combinations of the three preparation
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times,(
λphysics = short/long, λgeometry = short/long , λ = short/long

)
.

Assuming each group is very large, we look at the joint distribution of scores

within each of them. The conceptual difficulty here stems from the fact that,

for any given treatment, test scores are typically positively correlated rather

than stochastically independent. �

Example 1.3 Let us modify the previous example by assigning to each

student in each subject a binary grade, “high” or “low,” according as the

student is, respectively, above or below the median score in this subject

received by all student in the same preparation group. Thus, in the prepara-

tion group
(
λphysics = long , λgeometry = short , λFrench = short

)
, if the me-

dian scores in physics is m, a student gets the grade “high” if her score is

above m and “low” if it is not. This defines three outputs that we can call

Bphysics, Bgeometry, BFrench. The hypothesis represented by the diagram

λphysics

��

λgeometry

��

λFrench

��
Bphysics Bgeometry BFrench

is more subtle than in the previous example. It says that if one factors out the

possible dependence of the median score in physics on all three preparation

times (with no selectiveness assumed in this dependence), then whether a

student’s physics score will or will not fall above the median may only depend

on the preparation time for physics, and not on the preparation times for two

other subjects. And analogously for geometry and French. Since the grades

assigned to students are binary, their theoretical distribution for each of the

eight treatments is given by eight joint probabilities

Pr
(
Bphysics = high/low, Bgeometry = high/low, BFrench = high/low

)
.

Again, the conceptual difficulty is in that this probability is not typically

equal to 1/8 for all combinations of the high/low values, as it would have

to be if the three random variables were independent. Indeed, the marginal

(separately taken) probabilities here are, by the definition of median,

Pr
(
Bphysics = high

)
= Pr

(
Bgeometry = high

)
= Pr

(
BFrench = high

)
=

1

2
.

This example also shows why it is not wise to ignore the joint distributions

and look at the marginal ones only. If we did this, none of the random

outputs Bphysics, Bgeometry, BFrench would be viewed as influenced by any of
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the inputs λphysics, λgeometry, λFrench. But this view would clash with the fact

that in different preparation groups the corresponding joint probabilities will

typically be different. �

Example 1.4 This example is not from behavioral sciences but from quan-

tum physics. It is not as strange as it may appear to the reader. The fact

is, the mathematical formalisms independently developed to study selec-

tive influences in psychology turn out to be identical to those developed in

quantum physics to study the types of determinism involved in the behavior

of so-called entangled particles. Two entangled particles can be thought of

as being created as a single particles and then split into two mirror-images

running away from each other. Particles possess a property called spin, some-

thing that can be measured along differently oriented spatial axes. In the

case of so-called spin-1/2 particles, such as electrons, once an axis is chosen

the spin can attain one of only two possible values, referred to as “spin-up”

and “spin-down.” Suppose that two entangled electrons run away from each

other towards two observers, Alice and Bob (a traditional way of referring

to them in quantum physics), with previously synchronized clocks. At one

and the same moment by these clocks Alice and Bob measure spins of their

respective electrons along axes they previously chose. The nature of the

entanglement is such that if the axes chosen by the two observers are pre-

cisely the same, then the spin values recorded will necessarily have opposite

values: if Bob records spin-down, Alice will record spin-up. Suppose that

Bob always chooses one of two axes, which we will denote λBob = β1 and

λBob = β2. We view λBob, therefore, as one of the two inputs of the system.

The other input is the axis chosen by Alice, λAlice. Let it also have two possi-

ble values, λAlice
1 = α1 and λAlice

2 = α2. The outcome of Bob’s measurement

is the first of two outputs of the system. We denote it by ABob, with the

possible values “spin-up” and “spin-down”. The random output AAlice, with

the same two values, is defined analogously. The theoretical representation

of this situation is given by the joint probabilities(
λAlice = α1, λ

Bob = βj ,
)

ABob = ↑ ABob = ↓
AAlice = ↑ p↑↑ p↑↓
AAlice = ↓ p↓↑ p↓↓

where i and j stand for 1 or 2 each. It is reasonable to hypothesize that

λAlice

��

λBob

��
AAlice ABob
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In other words, the spin recorded by Alice may depend on which axes she

chose, but not on the axis chosen by Bob. And vice versa. But the two

outcomes here, for any of the four possible combinations of Alice’s and Bob’s

axes, are not stochastically independent. This makes this situation formally

identical to that described in the example with double detection, except that

in the entanglement paradigm the invariance of the marginal distributions

is guaranteed: Pr
(
ABob = ↑

)
is the same no matter what axis was chosen

by Alice, and vice versa. In fact, it may very well be the case that these

probabilities always remain equal to 1/2, as in the second example with the

three exams. �

Behavioral sciences abound with cases when selective influences are as-

sumed with respect to random variables whose realizations are not directly

observable. Rather these random variables are hypothetical entities from

which random variables with observable realizations can be derived theoret-

ically. Thus, one may posit the existence of certain unobservable processes

selectively influenced by certain experimental manipulations and manifested

by their contribution to observable response times. For instance, one may as-

sume the existence of processes called perception and response choice with

respective durations Apercept and Aresponse, and assume that the observed

response time is Apercept + Aresponse. One can further assume that stimulus

characteristics selectively influence Apercept and instruction versions (such

as speed emphasis versus accuracy emphasis) selectively influence Aresponse.

The conceptual problem mentioned in the previous examples arises here if

the two durations are not assumed to be stochastically independent.

In analyzing “same-different” judgments for pairs of sounds, the observ-

able entities are sounds λfirst and λsecond, each varying on several levels, and

responses “same” or “different” for each pair of these sounds’ levels. It is

typically postulated, however, that the response is a function (in the mathe-

matical sense of the word) of two unobservable random variables, Afirst and

Asecond, interpreted as internal representations of the two sounds, their im-

ages. For instance, a model may postulate that the response “same” is given

if and only if the distance between Afirst and Asecond in some metric is less

than some epsilon. It is reasonable to hypothesize then that

λfirst

��

λsecond

��
Afirst Asecond

Otherwise, why would one interpret Afirst and Asecond as “separate” respec-
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tive images of λfirst and λsecond, rather than speaking of A =
(
Afirst, Asecond

)
as one image of the compound stimulus

(
λfirst, λsecond

)
?

Stochastic independence of random outputs is, of course, a special case

of stochastic relationship. It is clear from our opening examples that this is

one case when the issue of defining and testing for selective influences is con-

ceptually transparent. Deterministic outputs are a special case of random

outputs, moreover, they can be formally considered stochastically indepen-

dent. To see that a deterministic output a is influenced by an input λ but

not input λ′, see if its value changes in response to changes in λ but re-

mains constant if λ′ changes with λ fixed. The only reason for mentioning

here this obvious consideration is this: there is a wide class of theoretical

models which deal with deterministic inputs and and random outputs, but

in which selectiveness of influences is formulated as a relationship between

deterministic entities, namely, between the inputs and some parameters of

the distributions of the random outputs. Parameters of distributions are, by

definition, deterministic quantities. Such models require no special theory

of selective influences.

Example 1.5 In multinomial processing tree models we see simple ex-

amples of random variables related to inputs through parameters describing

these variables’ distributions. A prototypical example is provided by R. Dun-

can Luce’s (1959) two-state low threshold model of detection,

λstimulus // •
p

v~ "*
λpayoff //

11•(detected)

&.

q

��

• (not detected)

r

��px
• (No) • (Yes)

The processing flow is shown by the double-line arrows: from the root of

the tree to the root’s children nodes, labeled “detected” and “not detected,”

and from each of those to their children nodes, labeled “Yes” and “No.” The

labels p, q, and r are probabilities. The information shown in the process-

ing tree is sufficient for computations, except for one additional constraint:

the model stipulates that qr = 0 (i.e., when one of the q and r is nonzero

the other one must be zero). The inputs λstimulus and λpayoff are shown on

the margins. A single-line arrow pointing at a node of the tree indicates

influence on the random variable whose possible values are the children of

this node. Stimulus influences the distribution of the (unobservable) binary
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random variable called “detection state.” It has two values occurring with

probabilities p and 1−p. Payoff is any procedure involving feedback and de-

signed to bias to various degrees the participants towards or against saying

“Yes.” This input influences the (observable) random variable “response.”

The point to note here is this: there is no reason to consider the joint distri-

butions of detection state and response for different combinations of stimuli

and payoffs; all we need is to declare which of the three parameters of the

model, p, q, r depends on which input,

p = p
(
λstimulus

)
, q = q

(
λpayoff

)
, r = r

(
λpayoff

)
.

This is simple and clear, even though the outputs “detection state” and

“response” are not stochastically independent. �

As it turns out, it is impossible to answer the questions posed in this

introductory section without getting “back to basics,” to the foundational

concepts of probability, random variable, joint distribution, and dependence

of joint distributions on deterministic variables. It is simply impossible not

to make mistakes and not to get hopelessly confused in dealing with the

issues of selective influences if one is only guided by intuitive and informal

understanding of these notions. This applies even if the random variables

involved are as simple as binary responses. The first part of this chapter (Sec-

tions 1.2-1.9) is dedicated to these foundational issues. The reader should

be especially attentive when we discuss the fact that not all random vari-

ables are jointly distributed, that a set of random variables can always be

assigned a joint distribution in the absence of any constraints, but that this

may not be possible if the joint distribution should agree with the known

distributions of some subsets of this set of random variables. Essentially, the

issue of selective influences boils down to establishing whether this is or is

not possible in specific cases. We deal with this issue beginning with Section

1.10, as well as the issue of methods by which one can determine whether a

particular pattern of selective influences holds. In Section 1.17 we show how

the theory of selective influences applies to a classical problem of cognitive

psychology, the problem of determining, based on the overall response time,

whether certain hypothetical processes involved in the formation of the re-

sponse are concurrent or serial. The chapter concludes with a brief guide to

the relevant literature.
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1.2 What is a random variable?

Let us begin with the notion of a distribution of a random variable. The

formal definition of this notion is as follows: the distribution of a random

variable A is a triple

A = (S,Σ, p) ,

where

1. S is some nonempty set, called the set of possible values of A;

2. Σ is a sigma-algebra over S, which means a collection of subsets of S,

each called an event or a measurable set, such that

(a) S ∈ Σ,

(b) if S′ ∈ Σ, then S − S′ ∈ Σ,

(c) if S1, S2, . . . ∈ Σ (a finite or countably infinite sequence), then⋃
i=1,2,...

Si ∈ Σ;

3. p is some function (called probability measure) from Σ to [0, 1], such that

p (S′) for S′ ∈ Σ is interpreted as the probability with which a value of

A falls in (belongs to) event S′; it is assumed that

(a) p (S) = 1,

(b) (sigma-additivity) if S1, S2, . . . ∈ Σ (a finite or countably infinite

sequence), and if in this sequence Si ∩ Sj = ∅ whenever i 6= j (i.e.,

the subsets in the sequence are pairwise disjoint), then

p

 ⋃
i=1,2,...

Si

 =
∑

i=1,2,...

p (Si) .

The following consequences of this definition are easily derived:

1. ∅ ∈ Σ and p (∅) = 0;

2. if S1, S2, . . . ∈ Σ, then
⋂∞
i=1 Si ∈ Σ;

3. if S1, S2, . . . ∈ Σ and S1 ⊂ S2 ⊂ . . ., then

lim
i→∞

p (Si) = p

( ∞⋃
i=1

Si

)
;

4. if S1, S2, . . . ∈ Σ and S1 ⊃ S2 ⊃ . . ., then

lim
i→∞

p (Si) = p

( ∞⋂
i=1

Si

)
;
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5. if S1, S2 ∈ Σ and S1 ⊂ S2, then S2 − S1 ∈ Σ and

p (S1) + p (S2 − S1) = p (S2) ;

6. if S1, S2 ∈ Σ, then

p (S1 ∩ S2) ≤ min (p (S1) , p (S2)) ≤ max (p (S1) , p (S2)) ≤ p (S1 ∪ S2) .

Most of these consequences are known as elementary properties of prob-

ability. It is customary to write p (S′) for S′ ∈ Σ as Pr (A ∈ S′), if the

distribution of A is known from the context.

We see that in order to know the distribution of a random variable A

we have to know its set of possible values S and a set of specially chosen

subsets of S, called events. And we should have a procedure “measuring”

each event, that is, assigning to it a probability with which a value of A (an

element of S) falls within this event (which is also described by saying that

the event in question “occurs”).

Example 1.6 For a finite S, the sigma-algebra is usually defined as the

power set, i.e., the set of all subsets of S. For example, the distribution of

the outcome A of a roll of a fair die can be represented by the distribution

A = (S = {1,2,3,4,5,6},Σ=P(S), p) ,

where P(S) denotes the power set of S and p({s1, . . . , sk}) = k/6 for any set

{s1, . . . , sk} ∈ Σ of k elements in S. Similarly, the sum of two dice can be

represented by the distribution A = (S = {2,. . . ,12},Σ=P(S), p), where

p({s1, . . . , sk}) =

k∑
i=1

p({si})

and p({s}) = 1
36(6 − |7 − s|) gives the probability of each singleton (one-

element subset) {s}. �

Example 1.7 Let S be an interval of real numbers, finite or infinite,

perhaps the entire set R of real numbers. For continuous distributions defined

on S, at the very least we want to be able to measure the probability of all

intervals (a, b) ⊂ S. This requirement implies that our sigma-algebra Σ of

events must contain all so-called Borel subsets of S. The Borel sets form

the smallest sigma-algebra Σ over S that contains all open (or, equivalently,

all closed) intervals. One can construct this sigma algebra by the following

recursive procedure: (1) include in Σ all intervals in S; (2) add to this set of

intervals all countable unions of these intervals and of their complements; (3)

add to the previously obtained sets all countable unions of these sets of their
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complements; (4) and so on. Clearly, these steps are recursive applications of

the operations (b) and (c) in the definition of a sigma-algebra. Every Borel

set will be obtained at some step of this procedure.

The Borel sigma-algebra is sufficient for most purposes, but often the

sigma-algebra is further enlarged by adding to all Borel sets all null sets.

The latter are sets that can be covered by a countable sequence of intervals

with arbitrarily small total length (see Section 1.4). The motivation for this

extension is that anything that can be covered by an arbitrarily small length

should have its measure equal to zero (and for this it should be measurable).

The smallest sigma-algebra containing intervals and null sets is called the

Lebesgue sigma-algebra.

A continuous distribution on the real line can be defined using a density

function f(a). The distribution is given by A = (S,Σ, p), where Σ is the

Lebesgue sigma-algebra, and the probability measure of a set SA ∈ Σ is

given by the integral of the density function f over the set SA,

p(SA) =

∫
SA

f(a)da.

(To be well defined for all Lebesgue-measurable sets SA, the integral here

should be understood in the Lebesgue sense, but we need not go into this.)

�

We see that measurability of a subset of S is not a property of the sub-

set itself, but of this subset taken in conjunction with a sigma-algebra Σ.

Examples of non-measurable subsets of S therefore are easily constructed:

choose Σ which is not the entire power set of S, and choose a subset of S

which is not in Σ. For instance, if Σ = {∅, {1} , {2, 3} , {1, 2, 3}} over the

set S = {1, 2, 3}, then the single-element subset {3} is non-measurable. This

means that if A is distributed as (S,Σ, p), the probability p ({3}) with which

A falls in {3} (or, simply, equals 3) is undefined. This example may seem

artificial, as nothing prevents one from complementing Σ with all other sub-

sets of S = {1, 2, 3} (i.e., to assume that p is defined for all of them even if

it is only known for some). If S is an interval of reals, however, then there

are deeper reasons for not including in Σ all subsets of S.

It is obvious that different random variables can have one and the same

distribution. For instance, Peter and Paul can flip a fair coin each, and

describe the outcomes by one and the same distribution

A =

(
S = {0, 1} ,Σ = {∅, {0} , {1} , {0, 1}} , p (Σ) =

{
0,

1

2
,
1

2
, 1

})
.
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To distinguish one random variable from another, therefore, it is not suffi-

cient to know its distribution. We should, in addition, have a label or name

for the random variable: for instance, we can identify one random variable

as coin1, distributed as A, and another as coin2, also distributed as A.

Generally speaking, a random variable A can be viewed as a quadruple

(ιA, S,Σ, p), where ιA is its unique name and A = (S,Σ, p) is its distribution.

We do not need to be that formal, however, as the notation for a random

variable, A, also serves as its name. (The reader familiar with the conven-

tional definition of a random variable as a measurable function on a sample

space should wait patiently until Sections 1.6 and 1.7. A function may serve

as an identifying label too.)

Remark 1.1 Alternatively, one can assume that the name of a random

variable is always (implicitly) part of the elements of its domain S. For in-

stance, the domain for one of the two coins mentioned above may be defined

as S1 = {(0, coin1) , (1, coin1)} and for another as S2 = {(0, coin2) , (1, coin2)}.
The sigma-algebras Σ1 and Σ2 then have to be (re)defined accordingly. If

this approach is followed consistently, every random variable is uniquely

determined by its distribution. We do not follow this route in this chapter.

1.3 Jointly distributed random variables

Let A, B, and C be random variables with distributions A =
(
S1,Σ1, p1

)
,

B =
(
S2,Σ2, p2

)
, and C =

(
S3,Σ3, p3

)
.

Remark 1.2 We will consistently use numerical superscripts to refer to the

domain sets for random variables, to sigma-algebras over these sets, and later

to random variables and inputs. Notation S3, for example, always refers to a

domain set of some random variable, not to the Cartesian product S×S×S.

This should not cause any difficulties, as we use numerical exponents in this

chapter only twice, and both times this is explicitly indicated.

Let SA ∈ Σ1, SB ∈ Σ2, and SC ∈ Σ3 be three events. We know that

p1 (SA) is interpreted as the probability with which a value of A falls in SA
(or, the probability that the event SA “occurs”); and analogously for p2 (SB)

and p3 (SC). We also speak of events occurring jointly, or co-occurring, a

concept whose substantive meaning we will discuss in Section 1.7. For now

we will take it formally. In order to speak of SA, SB, SC co-occurring and

to ask of the probabilities with which they co-occur, we have to introduce a

new random variable, denoted DABC . As any random variable, it is defined
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by some unique name (e.g., “DABC”) and a distribution

DABC =
(
S123,Σ123, p123

)
.

The set S123 of possible values of DABC is the Cartesian product S1×S2×S3

(the set of all ordered triples with the first components chosen from S1, the

second from S2, the third from S3). The sigma-algebra Σ123 is denoted Σ1⊗
Σ2⊗Σ3 and defined as the smallest sigma-algebra containing the Cartesian

products SA × SB × SC for all SA ∈ Σ1, SB ∈ Σ2 and SC ∈ Σ3. This means

that Σ123 = Σ1 ⊗ Σ2 ⊗ Σ3 is a set of subsets of S1 × S2 × S3, such that

1. it contains all the Cartesian products SA × SB × SC just mentioned;

2. with every subset S′ it contains, it also contains the complement S123−S′;
3. with every sequence of subsets S1, S2 . . . it contains, it also contains their

union,
⋃
i=1,w,... Si;

4. it is included in any other set of subsets of S1 × S2 × S3 satisfying 1-2-3

above.

The probability measure p123 is called a joint probability measure. It should

satisfy the general requirements of a probability measure, namely:

p123

(
S1 × S2 × S3

)
= 1,

and

p123

 ⋃
i=1,2,...

Si

 =
∑

i=1,2,...

p (Si)

for any sequence of pairwise disjoint elements S1, S2, . . . of Σ123. In addition,

p123 should satisfy the following 1-marginal probability equations: for any

SA ∈ Σ1, SB ∈ Σ2 and SC ∈ Σ3,

p123

(
SA × S2 × S3

)
= p1 (SA) ,

p123

(
S1 × SB × S3

)
= p2 (SB) ,

p123

(
S1 × S2 × SC

)
= p3 (SC) .

Example 1.8 Let

S = {0, 1}, Σ = {∅, {0}, {1}, {0, 1}},

and let the random variables A, B, and C be distributed as

A = (S,Σ, p1) , B = (S,Σ, p2) , C = (S,Σ, p3) ,
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where

p1(Σ) = {0, 1/2, 1/2, 1}, p2(Σ) = {0, 1/4, 3/4, 1}, p3(Σ) = {0, 1, 0, 1}.

A joint distribution of A,B,C is defined on the product sigma-algebra

Σ123 = Σ⊗Σ⊗Σ, which is the smallest sigma-algebra containing all Carte-

sian products SA × SB × SC such that SA, SB, SC ∈ Σ. As the Cartesian

products include those of all singletons (one-element subsets) {(a, b, c)} =

{a}×{b}×{c}, and all subsets of S×S×S can be formed by finite unions of

these, the product sigma algebra Σ⊗Σ⊗Σ is the full power set of S×S×S.

One possible joint distribution for A,B,C is given by

DABC =
(
S123 = S × S × S,Σ123 = Σ⊗ Σ⊗ Σ, p123

)
,

where

p123(SABC) =
∑

(a,b,c)∈SABC

p123({(a, b, c)})

and p123({(a, b, c)}) is given by the table

a b c p123({(a, b, c)}) a b c p123({(a, b, c)})
0 0 0 1/16 1 0 0 3/16
0 0 1 0 1 0 1 0
0 1 0 7/16 1 1 0 5/16
0 1 1 0 1 1 1 0

Let us verify that this distribution satisfies the 1-marginal probability equa-

tions and is thus a proper joint distribution of A,B,C :

p123({0} × S × S) = 1/16 + 0 + 7/16 + 0 = 1/2 = p1({0}),
p123({1} × S × S) = 3/16 + 0 + 5/16 + 0 = 1/2 = p1({1}),
p123(S × {0} × S) = 1/16 + 0 + 3/16 + 0 = 1/4 = p2({0}),
p123(S × {1} × S) = 7/16 + 0 + 5/16 + 0 = 3/4 = p2({1}),
p123(S × S × {0}) = 1/16 + 7/16 + 3/16 + 5/16 = 1 = p3({0}),
p123(S × S × {1}) = 0 + 0 + 0 + 0 = 0 = p3({1}).

For each 1-marginal, it suffices to verify the probabilities of the points 0

and 1 as the probability values for singletons fully determine the discrete

distributions. �

The random variable DABC is commonly called a vector of the (jointly

distributed) random variables A, B, and C, and it is denoted (A,B,C).

We will use this vectorial notation in the sequel. One should keep in mind,

however, that any such a vector is a random variable in its own right. Fur-

thermore, one should keep in mind that the distribution (A,B,C), called the
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joint distribution with respect to the individual random variables A,B,C,

is not uniquely determined by these A,B,C. Specifically, although the set

S123 = S1×S2×S3 and the sigma-algebra Σ123 = Σ1⊗Σ2⊗Σ3 are uniquely

determined by the sets and sigma-algebras in the distributions A, B, and

C, there can generally be more than one joint probability measure p123.

The individual p1, p2, and p3 only serve as constraints, in the form of the

1-marginal probability equations above.

A, B, and C in (A,B,C) are called stochastically independent if, for any

SA ∈ Σ1, SB ∈ Σ2 and SC ∈ Σ3,

p123 (SA × SB × SC) = p1 (SA) p2 (SB) p (SC) .

This joint probability measure always satisfies the 1-marginal probability

equations.

Example 1.9 Let A and B be standard normally distributed random

variables. A bivariate normal joint distribution (A,B)(ρ) can be defined

with the density function

f12(a, b; ρ) =
1

2π
√

1− ρ2
exp

(
−a

2 + b2 − 2ρab

2(1− ρ2)

)
,

where −1 < ρ < 1 denotes the correlation coefficient. The sigma algebra

Σ12 = Σ1⊗Σ2 of the joint distribution is the product of two Lebesgue sigma-

algebras (called a Lebesgue sigma-algebra itself). The 1-marginal probability

equations can be verified by checking that integrating out either a or b yields

the standard normal density function with respect to the remaining variable.

The probability measure for C = (A,B)(ρ) is obtained as

p12(SC) =

∫
(a,b)∈Sc

f12(a, b; ρ)d(a, b).

Do C = (A,B) (ρ1) and D = (A,B) (ρ2) with ρ1 6= ρ2 exclude each other?

Not in the sense that defining one of them makes the other meaningless.

They both can be defined as variables of interest. But C and D cannot be

jointly distributed. �

The reverse relationship between joint and marginal distributions is more

straightforward: the distribution (A,B,C) uniquely determines the distri-

butions and identity of A, B, C, called the 1-marginal random variables

with respect to (A,B,C), as well as the distributions and identity of (A,B),

(B,C), and (A,C), called the 2-marginal random variables with respect to

(A,B,C). Thus, in the distribution A the set S1 is the projection Proj1 of
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the set S123 = S1 × S2 × S3, defined by

Proj1 (a, b, c) = a.

The sigma-algebra Σ1 consists of the projections Proj1 of the elements of

the sigma-algebra Σ123 = Σ1 ⊗ Σ2 ⊗ Σ3 having the form SA × S2 × S3.

And the probability measure p1 is determined by the 1-marginal probability

equations. The 2-marginal distributions (A,B), (B,C), and (A,C) are found

analogously. For example, if one defines function Proj23 by

Proj23 (a, b, c) = (b, c) ,

we have

(B,C) =
(
S23,Σ23, p23

)
,

where

S23 = Proj23

(
S1 × S2 × S3

)
,

Σ23 consists of the sets of the form

Proj23

(
S1 × SBC

)
, SBC ∈ Σ2 ⊗ Σ3,

and

p23 (SBC) = p123

(
S1 × SBC

)
.

The last equality is one of the three 2-marginal probability equations (the

remaining two being for p12 and p13).

One can check that

S23 = S2 × S3,

and

Σ23 = Σ2 ⊗ Σ3,

which is the smallest sigma-algebra containing the Cartesian products SB×
SC for all SB ∈ Σ2 and SC ∈ Σ3. In other words, the set S23 and the

sigma-algebra Σ23 over it in the 2-marginal distribution are precisely the

same as if they were formed for a joint distribution (B,C) with respect to

the 1-marginal distributions B and C. Moreover, the 2-marginal probability

p23 is a joint probability satisfying the 1-marginal probability equations

p23

(
SB × S3

)
= p2 (SB) ,

p23

(
S2 × SC

)
= p3 (SC) .
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Example 1.10 Continuing from Example 1.8, we can derive the following

2-marginals (and 1-marginals shown at the sides of the 2-marginals):

p12({(a, b)}) b = 0 b = 1
a = 0 1/16 7/16 1/2
a = 1 3/16 5/16 1/2

1/4 3/4

p12({(b, c)}) c = 0 c = 1
b = 0 1/4 0 1/4
b = 1 3/4 0 3/4

1 0

p12({(a, c)}) c = 0 c = 1
a = 0 1/2 0 1/2
a = 1 1/2 0 1/2

1 0

�

It should be clear now how one should generalize the notion of a joint dis-

tribution to an arbitrary number n of random variables, A1, . . . , An, and how

to define k-marginal distributions for k = 1, . . . , n (n-marginal distributions

being permutations of the joint one, including itself).

Remark 1.3 For an infinite set of random variables (countable or not) the

definition of a joint distribution is less obvious. We will not deal with this

notion in this chapter except for mentioning it occasionally, for complete-

ness sake. With little elaboration, let
(
Ak : k ∈ K

)
be an indexed family of

random variables (with an arbitrary indexing set K), each distributed as(
Sk,Σk, pk

)
. We say that the random variables in

(
Ak : k ∈ K

)
are jointly

distributed if A =
(
Ak : k ∈ K

)
is a random variable with the distribution

A =

(∏
k∈K

Sk,
⊗
k∈K

Σk, p

)
,

where

1.
∏
k∈K S

k is the Cartesian product of the sets Sk (its elements are func-

tions choosing for each element of K an element of Sk);

2.
⊗

k∈K Σk is the smallest sigma-algebra containing sets of the form S′ ×∏
k∈K−{k0} S

k, for all k0 ∈ K and S′ ∈ Σk0 ;

3. p is a probability measure on
⊗

k∈K Σk such that p
(
S′ ×

∏
k∈K−{k0} S

k
)

=

pk0 (S′), for all k0 ∈ K and S′ ∈ Σk0 .

The random variables Ak in A =
(
Ak : k ∈ K

)
are said to be stochastically

independent if any finite subset of them consists of stochastically indepen-

dent elements.
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Remark 1.4 Marginal random variables sometimes have to be defined hi-

erarchically. Consider, for example, A′ = (A,B) and B′ = (C,D). Then C ′ =

(A′, B′) has the 1-marginal distributions A′ = (A,B) and B′ = (C,D). And

A′ = (A,B), in turn, has 1-marginal distributions A and B. It may some-

times be convenient to speak of all of (A,B), (C,D), A, B, C, D as marginal

random variables with respect to a random variable C ′ = ((A,B) , (C,D)).

Note that ((A,B) , (C,D)), ((A,B,C) , D), (A, (B, (C,D))), etc. are all dis-

tributed as (A,B,C,D), because the Cartesian product S1 × S2 × S3 × S4

and the product sigma algebra Σ1 ⊗Σ2 ⊗Σ3 ⊗Σ3 are associative. The ran-

dom variables ((A,B) , (C,D)), ((A,B,C) , D), (A, (B, (C,D))), etc. differ

in their labeling only. (In the infinite case (Remark 1.3) the formal defini-

tion is rather straightforward, but it involves potentially more than a finite

number of hierarchical steps. We will assume that the notion is clear and a

formal definition may be skipped.)

1.4 Random variables in the narrow sense

The concept of a random variable used in this chapter is very general, with

no restrictions imposed on the sets and sigma-algebras in their distributions.

Sometimes such random variables are referred to as random entit ies, random

elements, or random variables in the broad sense, to distinguish them from

random variables in the narrow sense. The latter are most important in

applications. In particular, all our example involve random variables in the

narrow sense. They can be defined as follows. Let A be distributed as A =

(S,Σ, p).

(i) If S is countable, Σ is the power set of S (the set of all its subsets),

then A is a random variable in the narrow sense;

(ii) if S is an interval of real numbers, Σ is the Lebesgue sigma-algebra over

S (as defined in Example 1.7), then A is a random variable in the narrow

sense;

(iii) if A1, . . . , An are random variables in the narrow sense, then any

jointly distributed vector (A1, . . . , An) is a random variable (also referred to

as a random vector) in the narrow sense.

Random variables satisfying (i) are called discrete. The distribution of

such a random variable is uniquely determined by the probabilities assigned

to its singleton (one-element) subsets. These probabilities can also be viewed

as assigned to the elements themselves, in which case they form a probability

mass function. An example of a discrete random variable is given in Example

1.6. But S may also be countably infinite.
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Example 1.11 Let S be the set of positive integers {1, 2, . . . , n, . . .}, and

let p ({n}) = αn−1 (1− α), where α is a constant in [0, 1]. This defines a

discrete random variables interpreted as the number of independent trials n

with binary outcomes (success/failure) until the first failure. It is custom-

ary to replace (or even confuse) p ({n}) with the probability mass function

function p∗ (n) = p ({n}). �

Random variables satisfying (ii) are called continuous (see Example 1.7).

Any such a variable can be viewed as having S extended to the entire set of

reals, and its distribution is uniquely determined by the distribution function

F (x) = p ((−∞, x]) ,

for every real x. The function F (x) has the following properties:

1. it is nondecreasing;

2. as x→ −∞, F (x)→ 0;

3. as x→∞, F (x)→ 1;

4. for any real x0, as x→ x0+, F (x)→ F (x0) (right-continuity);

5. for any real x0, as x→ x0+, F (x) tends to a limit.

F (x) generally is not left-continuous: as x → x0−, the limit of F (x) need

not coincide with F (x0), the function may instead “jump” from the value

of limx→x0− F (x) to F (x0). The difference F (x0) − limx→x0− F (x) equals

p ({x0}), so the jumps occur if and only if p ({x0}) > 0. A distribution

function cannot have more than a countable set of jump points. For any two

reals x1 ≤ x2,

F (x2)− F (x1) = p ((x1, x2]) .

Example 1.12 A discrete random variable can always be redefined as a

continuous one. Thus, the variable in the previous example can be redefined

into a random variable X whose distribution is given by

F (x) =

{
0 for x < 1

αn−1 (1− α) for bxc = n ≥ 1,

where bxc is the floor function (the largest integer not exceeding x). �

The Lebesgue sigma-algebra over the reals, as defined in Example 1.7, is

the smallest sigma-algebra including all intervals and all null sets. A subset

S′ of reals is a null set if, for any ε > 0, however small, S′ is contained within

a union of open intervals S1, S2, . . . whose overall length is less than ε. An

empty set is, obviously a null set, and so is a single point, and a countable

set of points.
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Remark 1.5 Let us prove that a countable set of points is a null set, to

better understand the definition. Enumerate this set as x1, x2, . . ., choose an

ε > 0, and enclose each xi into interval
]
x− ε

2i+1 , x+ ε
2i+1

[
. The length of

this interval is ε
2i

, whence the overall length of the system of such intervals

cannot exceed ∑
i=1,2,...

ε

2i
≤ ε.

We conclude that a countable subset of S is a null set. There are uncountable

null sets.

As should be clear from our discussion of jumps and Example 1.12, a null

set may have a nonzero probability. If this does not happen, i.e., if F (x)

has no jumps, the distribution of the random variable is called absolutely

continuous.

Finally, the combination rule (iii) allows one to form vectors of discrete,

continuous, and mixed jointly distributed random variables using the con-

struction discussed in Section 1.3.

1.5 Functions of random variables

Let A be a random variable with distribution A =
(
S1,Σ1, p1

)
, let S2 be

some set, and let f : S1 → S2 be some function. Consider some sigma

algebra Σ2 of events over S2. For every SB ∈ Σ2 one can determine the

subset of all elements of S1 that are mapped by f into SB,

f−1 (SB) =
{
a ∈ S1 : f (a) ∈ SB

}
.

This subset, f−1 (SB), does not have to be an event in Σ1. If it is, for every

SB ∈ Σ2, then f is said to be a measurable function (or Σ1 → Σ2-measurable

function, to be specific). Measurability of a function therefore is not a

property of the function itself, but of the function taken in conjunction

with two sigma-algebras. In particular, given S1 and Σ1, any onto function

f : S1 → S2 (one with f
(
S1
)

= S2) will be measurable if we agree to define

Σ2 = f
(
Σ1
)
, the set of all f -images of the elements of Σ1; it is easy to prove

that f
(
Σ1
)

is a sigma-algebra over f
(
S1
)
, for any f .

Example 1.13 Let S1 = S2 = {1, 2, 3},

Σ1 = {∅, {1}, {2, 3}, {1, 2, 3}},

and

Σ2 = {∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}.
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Then the function f : Σ1 → Σ2 defined by f(a) = a is not measurable,

because {2} ∈ Σ2 but f−1({2}) = {2} /∈ Σ1. However, one can easily verify

that f(a) = min(a, 2) is a Σ1 → Σ2-measurable function. �

Of course, with finite S1, S2, one can always define the sigma-algebras as

full power sets and then all functions between these sets will be measurable.

Why is the notion of a measurable function important? Because mea-

surable functions can be used to obtain new random variables from exist-

ing ones. Given a random variable A and a Σ1 → Σ2-measurable function

f : S1 → S2, one can define a random variable B = f (A) distributed as

B =
(
S2,Σ2, p2

)
by putting, for any S′ ∈ Σ2,

p2

(
S′
)

= p1

(
f−1

(
S′
))
.

In other words, the probability with which the new variable B falls in an

event belonging to Σ2 is defined as the probability with which A falls in the

f -preimage of this event in Σ1 (which probability is well defined because

f is measurable). Of course, the notation B = f (A) serves as a unique

identification of B once we agree that A is uniquely identified.

Example 1.14 Let S1 and S2 be two intervals of reals, and let Σ1 and

Σ2 be the Borel sigma-algebras over them (see Example 1.7). A function

f : S1 → S2 which is Σ1 → Σ2-measurable is called a Borel-measurable

function. If in this definition Σ1 is the Lebesgue sigma algebra over S1 while

Σ2 continues to be the Borel sigma-algebra over S2 (note the asymmetry),

then f is a Lebesgue-measurable function. It is sufficient to require in these

two definitions that for any interval (a, b) ⊂ S2, its preimage f−1 ((a, b)) be

a Borel-measurable (respectively, Lebesgue-measurable) subset of S1. It is

easy to prove that if f is monotone or continuous, then it is Borel-measurable

(hence also Lebesgue-measurable).

Let now A be a random variable with distribution A =
(
R,Σ1, p

)
, where

Σ1 is the Lebesgue sigma-algebra over R. The function F (x) = p ((−∞, x])

is called the distribution function for A. It is monotonically non-decreasing

and maps into S2 = [0, 1]. If we define Σ2 to be the Borel sigma-algebra over

[0, 1], then F (being nondecreasing) is Lebesgue-measurable. If we apply F

to A, the resulting random variable B = F (A) is distributed on [0, 1]. If

furthermore F is a continuous function, then the distribution of B = F (A)

on [0, 1] is uniform. That is, its distribution is B =
(
[0, 1] ,Σ2, q

)
, where

q ((a, b)) = b− a for any (a, b) ⊂ [0, 1]. �

Let A be distributed as A =
(
S1,Σ1, p1

)
, and let B = f (A) and C =

g (A) be two random variables with distributions B =
(
S2,Σ2, p2

)
and C =
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S3,Σ3, p3

)
. This implies that both f and g are measurable functions in the

sense of, respectively, Σ1 → Σ2 and Σ1 → Σ3. For every SB ∈ Σ2 and every

SC ∈ Σ3 we have

p2 (SB) = p1

(
f−1 (SB)

)
, and p3 (SC) = p1

(
g−1 (SC)

)
.

A value b of B falls in SB if and only if b = f (a) for some a ∈ f−1 (SB). A

value c of C falls in SC if and only if c = g (a) for some a ∈ g−1 (SC). This

suggests a way of defining the notion of a joint occurrence of these events,

SB and SC : they occur jointly if and only if a in the previous two sentences

is one and the same. In other words, a value b of B falls in SB and, jointly,

a value c of C falls in SC if and only if, for some a ∈ f−1 (SB) ∩ g−1 (SC),

b = f (a) and c = g (a). Since f−1 (SB) ∩ g−1 (SC) is Σ1-measurable in

(belongs to Σ1), the probability

p23 (SB × SC) = p1

(
f−1 (SB) ∩ g−1 (SC)

)
is well defined, and we can take it as the joint probability of SB and SC .

We now can construct the joint distribution of (B,C),

(B,C) =
(
S2 × S3,Σ2 ⊗ Σ3, p23

)
,

where the set and the sigma-algebra are defined as required by the general

notion of a joint distribution (Section 1.3). The joint probability measure

p23 defined above for SB × SC-type sets is extended to all other members

of Σ2 ⊗ Σ3 by using the basic properties of a probability measure (Section

1.2). Equivalently, the joint probability measure p23 can be defined by

p23

(
S′
)

= p
(

(f, g)−1 (S′)) ,
for any S′ ∈ Σ2 ⊗Σ3. The notation (f, g)−1 (S′) designates the set SA of all

a ∈ S, such that (f (a) , g (a)) ∈ S′. It can be shown that SA ∈ Σ1, that is,

(f, g) is a measurable function.

It can easily be checked that p23 satisfies the 1-marginal probability equa-

tions,

p23

(
SB × S3

)
= p1

(
f−1 (SB) ∩ g−1

(
S3
))

= p1

(
f−1 (SB)

)
= p2 (SB) ,

p23

(
S2 × SC

)
= p1

(
f−1

(
S2
)
∩ g−1 (SC)

)
= p1

(
g−1 (SC)

)
= p3 (SC) ,

where we used the fact that

g−1
(
S3
)

= f−1
(
S2
)

= A.

We see that if two random variables are formed as functions of another

random variable, their joint distribution is uniquely determined.
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Example 1.15 A simple but instructive example is the joint distribution

of a random variable A and itself. Let A be distributed as (S,Σ, p). (A,A)

is a random variable both components of which are functions of one and the

same random variable, A = id (A), where id is the identity function defined

by id(a) = a. Let the distribution of (A,A) be (S × S,Σ⊗ Σ, p2). By the

general theory, for any S′ ∈ Σ we have S′ × S′ ∈ Σ⊗ Σ and

p2

(
S′ × S′

)
= p

(
id−1

(
S′
)
∩ id−1

(
S′
))

= p
(
S′
)
,

as it should be. It is not always true, however, that the probability measure

p2 of the set of pairs

diagS×S = {(a, a) : a ∈ S}

equals 1, because this set is not necessarily an event in Σ⊗Σ. As an example,

{(1, 1) , (2, 2) , (3, 3) , (4, 4)} is not such an event if Σ = {∅, {1, 2} , {3, 4} , {1, 2, 3, 4}}.
If, however, diagS×S ∈ Σ⊗ Σ, then

p2

(
diagS×S

)
= p

(
(id, id)−1 (diagS×S

))
= p (S) = 1.

�

The generalization to several functions of a random variable A is trivial.

Thus, we can form a joint distribution not just of B,C but of A,B,C (for

symmetry, we can consider A the identity function of A). In particular, the

joint probability of SB ∈ Σ2, SC ∈ Σ3, and SA ∈ Σ1 is defined here as

p23 (SA × SB × SC) = p1

(
SA ∩ f−1 (SB) ∩ g−1 (SC)

)
.

One of the important classes of measurable functions of random variables

are projections. We have already dealt with them in Section 1.3, when dis-

cussing marginal distributions. More generally, a vector of jointly distributed

random variables A1, A2, . . . , An is a random variable with a distribution(
S1 × . . .× Sn,Σ1 ⊗ . . .⊗ Σn, p1...n

)
,

where the notation should be clear from the foregoing. A projection function

Proji1...ik , where k ≤ n and i1, . . . , ik is a set of k distinct numbers chosen

from (1, . . . , n), is defined by

Proji1...ik (a1, . . . , an) = (ai1 , . . . , aik) .

Without loss of generality, let (i1, . . . , ik) = (1, . . . , k); if this is not the case,

one can always make it so by renumbering the original set of n random

variables. The function Proj1...k creates a k-marginal random variable

Proj1...k
(
A1, . . . , An

)
=
(
A1, . . . , Ak

)
,
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with the k-marginal distributions(
S1 × . . .× Sk,Σ1 ⊗ . . .⊗ Σk, p1...k

)
.

where, for any measurable even S
′

in Σ1 ⊗ . . .⊗ Σk,

p1...k

(
S′
)

= p1...n

(
S′ × Sk+1 × . . .× Sn

)
.

1.6 Random variables as measurable functions

We have seen that if A1, . . . , An are all functions of one and the same random

variable R, then they posses a joint distribution. To recapitulate, if

A1 = f1 (R) , . . . , An = fn (R) ,

R = (S∗,Σ∗, p∗) ,

and

Ai =
(
Si,Σi, pi

)
, i = 1, . . . , n,

then

(A1, . . . , An) =
(
S1 × . . .× Sn,Σ1 ⊗ . . .⊗ Σn, p1...n

)
,

where

p1...n

(
S′
)

= p∗

(
(f1, . . . , fn)−1 (S′)) ,

for any S′ ∈ Σ1 ⊗ . . .⊗ Σn. In particular,

p1...n (S1 × . . .× Sn) = p∗

(⋂
f−1
i (Si)

)
,

for all

S1 ∈ Σ1, . . . , Sn ∈ Σn.

It is easy to see that the reverse of this statement is also true: if A1, . . . , An

have a joint distribution, they can be presented as functions of one and the

same random variable. Indeed, denoting the random variable
(
A1, . . . , An

)
by R, we have

A1 = f1 (R) , . . . , An = fn (R) ,

where

fi ≡ Proji.

These two simple observations constitute a proof of an important theorem.
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Theorem 1.1 A vector
(
A1, . . . , An

)
of random variables possesses a joint

distribution if and only if there is a random variable R and a vector of

functions {f1, . . . , fn}, such that A1 = f1 (R) , . . . , An = fn (R).

Note that we need not specify here that the functions are measurable,

because both Ai and R in Ai = fi (R) are random variables (implying that

fi is measurable).

Although we do not deal in this chapter with infinite sets of jointly dis-

tributed random variables, it must be mentioned that Theorem 1.1 has the

following generalized formulation (see Remark 1.3).

Theorem 1.2 A family
(
Ak : k ∈ K

)
of random variables possesses a joint

distribution if and only if there is a random variable R and a family of

functions (fk : k ∈ K) such that Ak = fk (R) for all k ∈ K.

In probability textbooks, consideration is almost always confined to ran-

dom variables that are jointly distributed. This enables what we may call

the traditional conceptualization of random variables. It consists in choosing

some distribution

R = (S∗,Σ∗, p∗) ,

calling it a sample (probability) space, and identifying any random variable

A as a (Σ∗ → Σ1)-measurable function f : S∗ → S1. The set and sigma-

algebra pair
(
S1,Σ1

)
being chosen, the probability measure p1 satisfying,

for every S′ ∈ Σ1,

p1

(
S′
)

= p∗
(
f−1

(
S′
))
,

is referred to as an induced probability measure, and the distribution A =(
S1,Σ1, p1

)
as an induced (probability) space.

The sample space R is the distribution of some random variable R; in

the language just presented R should be defined as the identity function

id : S∗ → S∗ (one that maps each element into itself) on the sample space

R; its induced probability space is, obviously, also R. In our conceptual

framework we simply define R by its distribution R and some unique identi-

fying label (such as “R”). Note that the traditional language, too, requires

an identifying label and a distribution (using our terminology) in order to

define the sample space itself.

Remark 1.6 The traditional language does not constitute a different ap-

proach. It is a terminological variant of the conceptual set-up adopted in

this chapter and applied to a special object of study: a class A of random
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variables that can be defined as functions of some “primary” random vari-

able R. In accordance with Theorem 1.2, A can also be described without

mentioning R, as a class of random variables such that, for any indexed

family of random variables
(
Ak : k ∈ K

)
with Ak ∈ A (R) for all k ∈ K,

there is a random variable A =
(
Ak : k ∈ K

)
that also belongs to A.

1.7 Unrelated random variables and coupling schemes

There are two considerations to keep in mind when using the traditional

language of random variables as measurable functions on sample spaces.

One of them is that sample spaces R (or “primary” random variables

R) are more often than not nebulous: they need not be and usually are

not explicitly introduced when dealing with collections of jointly distributed

random variables, and they often have no substantive interpretation if intro-

duced. Consider an experiment in which a participant is shown one of two

stimuli, randomly chosen, and is asked to identify them by pressing one of

two keys as soon as possible. In each trial we record two random variables:

stimulus presented and response time observed, RT. The joint distribution

of stimuli and response times is well defined by virtue of pairing them trial-

wise. But what would the “primary” random variable R be of which stimulus

and RT would be functions? No one would normally attempt determining

one, and it is difficult if one tries, except for the trivial choice R =(stimulus,

RT) or some one-to-one function thereof. The stimulus and RT then would

be projections (i.e., functions) of R, but this hardly adds insights to our

understanding of the situation. Moreover, as soon as one introduces a new

random variable in the experimental design, say, “response key,” indicating

which of the two keys was pressed, the “primary” random variable R has

to be redefined. It may now be the jointly distributed triple R =(stimulus,

response key, RT).

The second consideration is that there can be no such thing as a single

“primary” random variable R allowing one to define all conceivable random

variables as its functions. This is obvious from the cardinality considerations

alone: the set S∗ in R would have to be “larger” than the set of possible

values for any conceivable random variable (which can, of course, be chosen

arbitrarily large). It is a mathematical impossibility. The universe of all

conceivable random variables should necessarily include random variables

that are not functions of a common “primary” one. In view of Theorem

1.2, this means that there must be random variables that do not possess a

joint distribution. The situation should look like in the diagram below, with
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A1, A2, . . . being functions of some R1, B1, B2, . . . being functions of some

R2, but R1 and R2 being stochastically unrelated, with no joint distribution.

R1

��}} !!vv ((
. . . A1 A2 A3 . . .

R2

��}} !!vv ((
. . . B1 B2 B3 . . .

It is true that, as explained below, once R1 and R2 are introduced (by their

distributions and identifying labels), there is always a way to introduce a

new random variable
(
H1, H2

)
(whose components are functions of some

random variables) such that H1 has the same distribution as R1 and H2 has

the same distribution as R2. But there is no way of conceiving all random

variables in the form of functions of a single “primary” one.

Examples of random variables that normally are not introduced as jointly

distributed are easy to find. If RTs in an experiment with two stimuli (say,

“green” and “red”) are considered separately for stimulus “green” and stim-

ulus “red”, we have two random variables: RTgreen and RTred. What “nat-

ural” stochastic relationship they might have? The answer is, none: the two

random variables occur in mutually exclusive conditions, so there is no priv-

ileged way of coupling realizations of RTgreen and RTred and declaring them

co-occurring. Once these random variables are introduced, one can impose a

joint distribution on them. For example, one may consider them stochasti-

cally independent, essentially forcing on them the coupling scheme in which

each realization of RTgreen considered as if it co-occurred with every real-

ization RTred. But it is also possible to couple them differently, for instance,

by the common quantile ranks, so that the qth quantile of RTred is paired

with and only with the qth quantile of RTgreen. The two random variables

then are functions of the quantile rank, which is a random variable uni-

formly distributed between 0 and 1. The point is, neither of these nor any

of the infinity of other coupling schemes for the realizations of RTgreen and

RTred is privileged, and none is necessary: one need not impose any joint

distribution on RTgreen and RTred.

It can be shown that stochastic independence can be imposed on any set

of pairwise stochastically unrelated random variables.

Theorem 1.3 For any vector
(
R1, . . . , Rn

)
(more generally, any fam-

ily
(
Rk : k ∈ K

)
) of random variables that are pairwise stochastically un-

related there is a random variable H =
(
H1, . . . ,Hn

)
(generally, H =
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Hk : k ∈ K

)
) with stochastically independent Hk, such that Hk = Rk for

all k ∈ K.

H is called the independent coupling for
(
Rk : k ∈ K

)
. In general, a cou-

pling for a family of random variables
(
Rk : k ∈ K

)
, is any random vari-

able H =
(
Hk : k ∈ K

)
whose every 1-marginal random variable Hk is dis-

tributed as Rk.

Theorem 1.3 must not be interpreted to mean that one can take all pair-

wise stochastically unrelated random variables and consider them stochasti-

cally independent. The reason for this is that this class is not a well defined

set, and cannot be therefore indexed by any set. Indeed, if it were possible

to present it as
(
Rk : k ∈ K

)
, then one could form a new random variable

R =
(
Rk : k ∈ K

)
whose distribution is the same as (Hk : k ∈ K) in Theo-

rem 1.3, and it would follow that the set contains itself as an element (which

is impossible for a set).

Summarizing, in practice random variables are often well defined without

their joint distribution being well defined. There is nothing wrong in deal-

ing with stochastically unrelated random variables without trying to embed

them in jointly distributed system. When such an embedding is desirable,

the joint distribution is “in the eyes of the beholder,” in the sense of de-

pending on how one wishes to couple the realizations of the variables being

interrelated.

1.8 On sameness, equality, and equal distributions

We have to distinguish two different meanings in which one can understand

the equality of random variables, A = B.

One meaning is that A and B are different notations for one and the

same variable, that is, that A and B have the same identifying label and

the same distribution. This meaning of equality is implicit when we say

“let D be (A,B,C), jointly distributed” or “there is a random variable

A =
(
Ak : k ∈ K

)
.”

The other meaning of A = B is that

1. these random variables have (or may have) different identifying labels

(i.e., they are not or may not be the same);

2. they are identically distributed, A = B = (S,Σ, p1);

3. they are jointly distributed, and their joint distribution has the form

(S × S,Σ⊗ Σ, p2);
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4. for any S′ ∈ Σ,

p2

(
S′ × S′

)
= p1

(
S′
)
.

In some cases, if diagS = {(a, a) : a ∈ S} is a measurable set (i.e., it belongs

to Σ⊗ Σ), one can replace the last property with

p2 (diagS) = 1,

which can also be presented as

Pr (A = B) = 1.

If A and B about which we know that A = B are represented as functions

of some random variable R, then it is usually assumed that diagS ∈ Σ⊗ Σ,

and the two functions representing A and B are called equal with probability

1 (or almost surely). Of course, if A and B are merely different notations

for one and the same random variable, they are always jointly distributed

and equal in the second sense of the term (see Example 1.15).

The equality of random variables, in either sense, should not be confused

with the equality of distributions, A = B. The random variables A and B

here may but do not have to be jointly distributed. They may very well be

stochastically unrelated. We will use the symbol ∼ in the meaning of “has

the distribution” or “has the same distribution as.” Thus, A ∼ A always,

A ∼ B if and only if A = B, and A = B always implies A ∼ B.

An important notational consideration applies to random variables with

imposed on them or redefined joint distributions. One may write (A,B)

either as indicating a pair of stochastically unrelated random variables, or

some random variable C = (A,B). The two meanings are distinguished by

context. Nothing prevents one, in principle, from considering the same A and

B as components of two differently distributed pairs, C = (A,B) and C ′ =

(A,B), or as components of a C = (A,B) possessing a joint distribution

and a pair (A,B) of stochastically unrelated random variables. Doing this

within the same context, however, will create conceptual difficulties. For one

thing, we would lose the ability of presenting A and B as functions of some

R (based on their joint distribution in C).

There is a simple and principled way of avoiding this inconvenience: use

different symbols for random variables comprising different pairs (more gen-

erally, vectors or indexed families), considering them across the pairs (vec-

tors, families) as equally distributed stochastically unrelated random vari-

ables. In our example, we can write C = (A,B) and C ′ = (A′, B′), where

A ∼ A′ and B ∼ B′, with C and C ′ being stochastically unrelated. The

same principle was applied in the formulation of Theorem 1.3 and more
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generally, in the definition of a coupling: rather than saying that given

a family of stochastically unrelated
(
Rk : k ∈ K

)
, its coupling is any ran-

dom variable H =
(
Rk : k ∈ K

)
whose components are jointly distributed

(e.g., independent), the definition says that a coupling is a random variable

H =
(
Hk : k ∈ K

)
such that Hk ∼ Rk for all k ∈ K. This means, in par-

ticular, that every vector of random variables is stochastically unrelated to

any of its couplings.

1.9 Random outputs depending on inputs

Let a random variable be distributed as (S,Σ, pφ), where φ stands for some

deterministic variable taking values in a set Φ. This means that the proba-

bility measure on Σ (the entire function) is generally different for different

values of Φ. One could also write p (φ) instead of pφ, but one should keep in

mind that this is not a function from Φ to a set of values of p (real numbers

between 0 and 1) but rather a function from Φ to the set of all possible

probability measures on Σ. The dependence of pφ on φ means that the dis-

tribution (S,Σ, pφ) of the random variable in question depends on φ. We can

present it as Aφ, and the random variable itself as Aφ. One can say that the

random variable A depends on φ, which is equivalent to saying that there is

an indexed family of random variables (Aφ : φ ∈ Φ).

Let φ1 and φ2 be two different elements of Φ. We will assume throughout

the rest of the chapter that the corresponding random variables Aφ1 and

Aφ2 always have different identifying labels (such as “A at φ = φ1” and “A

at φ = φ2”), that is, they are never one and the same variable. But they may

have one and the same distribution function, if pφ1 ≡ pφ2 . If A is a vector of

jointly distributed random variables
(
A1, . . . , An

)
, then its dependence on

φ can be shown as Aφ =
(
A1, . . . , An

)
φ

or Aφ =
(
A1
φ, . . . , A

n
φ

)
.

In the following, φ always represents mutually exclusive conditions under

which A is observed, and the indexed family (Aφ : φ ∈ Φ) abbreviated by A

consists of pairwise stochastically unrelated random variables. The elements

of Φ are referred to as treatments, the term being used in the same way as

in the analysis of variance: a combination of values of different factors, or

inputs. We will use the latter term. An input is simply a variable λ with a

set of possible values Λ. If the number of inputs considered is m, a treatment

is a vector

φ =
(
λ1, . . . , λm

)
,
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with λ1 ∈ Λ1, ..., λm ∈ Λm. The set of treatments is therefore

Φ ⊂ Λ1 × . . .× Λm.

Remark 1.7 As it is commonly done in mathematics, we will use the same

symbol to denote a variable and its specific values. For example, in λ1 ∈ Λ1

the symbol λ1 refers to a value of λ1, whereas in the sentence “A1 depends

on λ1” the same symbol refers to the variable as a whole. This ambiguity

is possible to avoid by using Λ1 in place of λ1 when referring to the entire

variable, and using a pair
(
λ1,Λ1

)
when referring to an input value as that

of a given input. We do not use this rigorous notation here, assuming context

will be sufficient for disambiguation.

Example 1.16 Let φ describe a stimulus presented to a participant. Let

it attain eight possible values formed by combinations of three binary at-

tributes, such as

λ1 ∈ Λ1 = {large, small} , λ2 ∈ Λ2 = {bright, dim} , λ3 ∈ Λ3 = {round, square} .

Let the participant respond by identifying (correctly or incorrectly) these

attributes, by saying A1 = “large” or “small”, A2 = “bright” or “dim”, and

A3 = “round” or “square”. The response therefore is a vector of three binary

random variables
(
A1, A2, A3

)
φ

that depends on stimuli φ =
(
λ1, λ2, λ3

)
.

Equivalently, we can say that there are eight triples of random variables,

one for each treatment,
(
A1, A2, A3

)
φ1
, . . .,

(
A1, A2, A3

)
φ8

. �

The set of all treatments Φ may be equal to Λ1 × . . . × Λm, but it need

not be. Some of the logically possible combinations of input values may not

be physically realizable or simply may not be of interest. The elements of Φ

therefore are referred to as allowable treatments. We will see later that this

notion is important in pairing inputs with random outputs.

Example 1.17 Suppose Λ1 and Λ2 denote the sets of possible lengths of

two line segments presented side by side in the visual field of an observer.

Let A1 and A2 denote the observer’s numerical estimates of the two lengths.

If the goal of the experiment is to study perceptual discrimination, it may

be reasonable (and time-saving) to exclude the pairs with large values of∣∣λ1 − λ2
∣∣. For example, if Λ1 = Λ2 = {5, 6, 7, 8, 9}, the set of allowable

treatments may be defined as

Φ = {(λ1, λ2) ∈ Λ1 × Λ2 : |λ1 − λ2| ≤ 2}.

This set contains only 19 treatments of the 25 logically possible combina-

tions. �
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As explained in the introductory section, inputs may very well be random

variables themselves, but only their possible values rather than their dis-

tributions are relevant in our analysis: the distributions of random outputs

are always conditioned upon particular treatments. All inputs therefore are

always treated as deterministic quantities.

1.10 Selectiveness in the dependence of outputs on inputs

We are interested in the relationship between (deterministic) inputs and

random outputs. Specifically, we are interested in the selectiveness in this

relationship: which input may and which may not influence a given output.

Such selectiveness can be presented in the form of a diagram of influences,

where an arrow from an input λ to a random output A means that λ influ-

ences A (note that the meaning of “influence” has not been as yet defined).

The absence of an arrow from an input λ to a random output A excludes λ

from the set of inputs that influence A.

Consider, for example the following arrow diagram

α

�� ��

β

���� �� ''

γ

����
A B C D

This diagram can be interpreted by saying that:

1. the random outputs (A,B,C,D) are jointly distributed, and their joint

distribution (specifically, joint probability measure) depends on the in-

puts (α, β, γ); in other words, (A,B,C,D) is in fact (A,B,C,D)αβγ , or

(Aαβγ , Bαβγ , Cαβγ , Dαβγ).

2. output A is influenced by inputs α, β but not by input γ;

3. output B is influenced by all inputs, α, β, γ;

4. output C is influenced by input β but not by inputs α, γ;

5. output D is influenced by inputs β and γ, but not by α.

The first thing to do here is to ask the question we asked in the introduc-

tory section: does this even make sense? It certainly does if (A,B,C,D)αβγ ,

for every treatment (α, β, γ), is a vector of independent random variables.

Then the points 2,3, and 4, above simply translate into the statements:

the marginal distribution of A depends on α, β but not on γ; the marginal

distribution of B depends on α, β, γ; etc. But does the selectiveness make

sense if the random outputs are not stochastically independent? Look at the
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diagram below, the same as above, but with added point lines indicating

stochastic interdependences.

α

��

��

β

��

��

��

''

γ

��

��

A D

B C

We see, for instance, that output A is influenced by α, and output C is

stochastically dependent on A. In what sense then one can say that α does

not influence C? The output B is influenced by all inputs, and every other

output is stochastically dependent on B. Does not this mean that every

output is influenced by every input?

This seemingly compelling line of reasoning is a conceptual confusion. It

confuses two types of relations, both of which can be described using the

word “dependence.” Stochastic dependence and dependence of outputs on

inputs are different in nature. This is easy to understand if we consider the

following diagram:

α

��   

β

��~~ '' **

γ

  ww
A′ B′ C ′ D′

R

hh `` >> 66

In this diagram, every random variable is a function of all the arguments

from which the arrows leading to this random variable initiate:

A′αβγ = f1 (α, β,R) ,

B′αβγ = f2 (α, β, γ,R) ,

C ′αβγ = f3 (β,R) ,

D′αβγ = f4 (α, β,R) .

For every value ofR and for every treatment (α, β, γ), the values of (A′, B′, C ′, D′)αβγ
are determined uniquely. Suppose now that we have, for every treatment,(

A′, B′, C ′, D′
)
αβγ
∼ (A,B,C,D)αβγ .
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This assumption explains the coexistence of the stochastic relationship be-

tween the random outputs and the selectiveness in their dependence on

the inputs. For any given treatment, the components of (A,B,C,D)αβγ are

generally stochastically interdependent because they are distributed as func-

tions of one and the same random variable R (of course, as a special case,

they may also be stochastically independent). At the same time, for any

fixed value r of R, the value a = f1 (α, β, r) of the output A′αβγ cannot

depend on γ, the value c = f3 (β, r) of the output C ′αβγ cannot depend on

anything but β, etc. And since the distributions of (A′, B′, C ′, D′)αβγ and

(A,B,C,D)αβγ are the same, they share the same selectiveness pattern.

This consideration leads us to a rigorous definition of what it means for a

vector of random outputs (A,B,C,D)αβγ to satisfy the pattern of selective

influences represented in the opening diagram of this section: this pattern

is satisfied if and only if the equations above are satisfied for some choice

of a random variable R and function f1, f2, f3, f4. This definition can be

generalized to an arbitrary family of random outputs and an arbitrary family

of inputs. However, we will confine our attention to the case when these

families are finite vectors. And we will use a special (re-)arrangement of the

inputs to make the definition especially simple.

Remark 1.8 It should be kept in mind that the meaning of “λ influences

A” includes, as a special case the possibility of λ not influencing A. There

is an asymmetry in saying that, in the example used in this section, C

depend on β, and saying that C does not depend on α. The latter is a

definitive statement: α is not within the list of arguments in the function

c = f3 (β, r). The dependence on β means that β is within this list. But a

constant function is a special case of a function. So c = f3 (β, r) may, as a

special case, be constant at all values of R, or at all values of R except on a

subset of measure zero. For instance, if R is uniformly distributed between 0

and 1 (we will see below that this choice is possible in a wide class of cases)

and c = f3 (β, r) is a non-constant function of β only at rational r, then

C does not depend on β with probability 1 (because the set of all rational

points is countable, hence its Lebesgue measure is zero). This shows that

the terms “depends on” and “influences” should generally be understood as

“may depend on” and “may influence.”

1.11 Selective Influences in a canonical form

Continuing with the same example, let us consider the random outputs one

by one, and for each of them group together all inputs that influence it. We
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get

λ1 = (α, β)

��

λ2 = (α, β, γ)

��

λ3 = (β)

��

λ4 = (β, γ)

��
A B C D

Let us assume that each of the inputs α, β, γ has three possible values,

crossed in all possible ways to form 27 treatments. Each of the newly formed

groups of inputs can be viewed as a new input in its own right. Thus, λ1

and λ4 are inputs whose sets of possible values Λ1 and Λ4 have nine possible

values each, λ2 is an input with 27 possible values in Λ2, and λ3 is an input

with three values in Λ3.

Such a rearrangement is always possible, whatever the original pattern

of influences, and it achieves a one-to-one correspondence between random

outputs and inputs. We call a diagram with such one-to-one correspondence

a canonical diagram of influences. (The term “canonical” is used in math-

ematics to refer to a standard representation into which a variety of other

representations can be transformed.) The problem of selectiveness with a

canonical diagram acquires a simple form: is every random output selec-

tively influenced by its corresponding input?

When dealing with canonical diagrams it is especially important to keep in

mind that allowable treatments are generally just a subset of the Cartesian

product of the sets of input values. In our example, this Cartesian product

is Λ1×Λ2×Λ3×Λ4 and it consists of 9×27×3×9 elements. But, obviously,

only 27 combinations of new inputs’ values are allowable, corresponding to

the 27 treatments formed by the completely crossed original inputs. Thus,

if λ2 = (α, β, γ), then the only allowable treatment containing this value of

λ2 also contains λ1 = (α, β), λ3 = (β), and λ4 = (β, γ).

Another consideration related to the canonical diagrams of influences is

that in order to ensure one-to-one correspondence between inputs and ran-

dom outputs, we may need to allow for “dummy” inputs, with a single

possible value. Consider the following example:

α

��

β

����

γ

��
A B C

Not being influenced by any inputs (as it is the case with the output C) is

a special case of selectiveness, so this situation falls within the scope of our
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analysis. Presented in the canonical form, this diagram becomes

λ1 = (α, β)

��

λ2 = (β, γ)

��

λ3 = ()

��
A B C

The new input λ3 represents an empty subset of original inputs. Therefore

λ3 does not change, and should formally viewed as an input whose set of

possible values Λ3 contains a single element, that we may denote arbitrarily.

We are ready now to give a formal definition of selective influences. Let(
λ1, . . . , λn

)
be a vector of inputs, with values belonging to nonempty sets(

Λ1, . . . ,Λn
)
, respectively. Let Φ ⊂ Λ1× . . .×Λn be a nonempty set of allow-

able treatments. Let
(
A1
φ, . . . , A

n
φ

)
be a vector of random variables jointly

distributed for every φ ∈ Φ. (Recall that for φ 6= φ′, the random variables(
A1
φ, . . . , A

n
φ

)
and

(
A1
φ′ , . . . , A

n
φ′

)
are stochastically unrelated.) We say that

the dependence of
(
A1
φ, . . . , A

n
φ

)
on φ satisfies the (canonical) diagram of

influences

λ1

��

. . . λn

��
A1 . . . An

if and only if one can find a random variable R and functions f1, . . . , fn such

that (
A1
φ, . . . , A

n
φ

)
∼
(
f1

(
λ1, R

)
, . . . , fn (λn, R)

)
for every

(
λ1, . . . , λn

)
= φ ∈ Φ.

Remark 1.9 There is no implication of uniqueness in this definition: be-

low, in the discussion of the linear feasibility test, we will reconstruct R

explicitly, and we will see that it can, as a rule, be chosen in infinitely many

ways. Theorem 1.6 below shows the non-uniqueness of R by another argu-

ment.

Instead of drawing diagrams, in the sequel we will present the same pattern

of selective influences as(
A1, . . . , An

)
"
(
λ1, . . . , λn

)
,

and say that A1, . . . , An are selectively influenced by λ1, . . . , λn (respec-

tively). If it is known that for a given vector of input-output pairs the defi-

nition above is not satisfied whatever R and f1, . . . , fn one chooses, then we
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write (
A1, . . . , An

)
6"
(
λ1, . . . , λn

)
.

Note that for this schematic notation to make sense, context in which it is

used should specify the sets of input values, the distributions of
(
A1
φ, . . . , A

n
φ

)
,

and the set of allowable treatments.

Example 1.18 Let R = (R1, R2, R3) denote a vector of independent stan-

dard normal random variables, and suppose the input factors Λ1 and Λ2 are

some subsets of R. Then, the binary random variables

A1
(λ1,λ2) =

{
1 if R1 < λ¹ +R3,

0 otherwise,

A2
(λ1,λ2) =

{
1 if R2 < λ2 +R3,

0 otherwise,

are selectively influenced by respectively λ1 ∈ Λ1 and λ2 ∈ Λ2, because

A1 depends only on (λ1, R) and A2 depends only on (λ2, R). For any given(
λ1, λ2

)
, the random variables A1

(λ1,λ2) and A2
(λ1,λ2) are not stochastically

independent because R1 −R3 and R2 −R3 have a nonzero correlation. �

1.12 Joint Distribution Criterion

Let us begin by making sure that the simplest special case, when
(
A1
φ, . . . , A

n
φ

)
are mutually independent random variables at every allowable treatment φ,

falls within the scope of the general definition. We expect, if our general

definition is well constructed, that in this case selectiveness of influences,(
A1, . . . , An

)
"
(
λ1, . . . , λn

)
, follows from the fact that the distribution of

Akφ (for k = 1, . . . , n) depends only on λk. In order not to deal with infi-

nite indexed families, let us assume that λk has a finite number of values,

enumerated as 1, . . . ,mk. Consider the random variable

H =
(
H1

1 , . . . ,H
1
m1
, . . . ,Hk

1 , . . . ,H
k
mk
, . . . ,Hn

1 , . . . ,H
n
mn

)
with stochastically independent components, such that, for all i = 1, . . . ,mk

and k = 1, . . . , n,

Hk
i ∼ Akφ

whenever λk = i is in φ. In other words, if the treatment φ contains the

ith value of the input λk, then we pick Akφ, and change its identifying label

with its distribution intact to create Hk
i . Clearly, the Hk

i will be the same
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(provided we always use the same label) irrespective of which φ contains

λk = i. The variable H above always exists by Theorem 1.3. Let us define

function fk for k = 1, . . . , n by

fk

(
i, h1

1, . . . , h
1
mk
, . . . , hk1, . . . , h

k
mk
, . . . , hn1 , . . . , h

n
mk

)
= hki .

This can be understood as the “first-level” kth projection that selects from

the range of the arguments the subrange hk1, . . . , h
k
mk

, followed by the “second-

level” ith projection that selects from this subrange the argument hki . It is

obvious then that, for every φ ∈ Φ,

Akφ ∼ fk (i,H)

whenever φ contains λk = i. But then(
A1
φ, . . . , A

n
φ

)
∼
(
f1

(
λ1, H

)
, . . . , fn (λn, H)

)
whenever

(
λ1, . . . , λn

)
= φ ∈ Φ, as it is required by the general definition.

The vector H constructed in this analysis is a special case of the reduced

coupling vector introduced next. As it turns out, the existence of such a

vector, with one random variable per each value of each input is the gen-

eral criterion for selective influences. A criterion for a statement is another

statement which is equivalent to it. Put differently, a criterion is a condition

which is both necessary and sufficient for a given statement.

Consider the statement thatA1, . . . , An are selectively influenced by λ1, . . . , λn,

respectively. By definition, for this to be true, there should exist functions

f1, . . . , fn and a random variable R such that(
A1
φ, . . . , A

n
φ

)
∼
(
f1

(
λ1, R

)
, . . . , fn (λn, R)

)
for every

(
λ1, . . . , λn

)
= φ ∈ Φ. We continue to assume that every input

λk has a finite number of values, enumerated 1, . . . ,mk. (Recall, from the

discussion of dummy inputs, that mk = 1 is allowed.)

For each k and every value of λk, denote

Hk
λk = fk

(
λk, R

)
.

As λk runs from 1 to mk and k runs from 1 to n, this creates m1 + . . .+mn

random variables, one random variable per each value of each input, jointly

distributed due to being functions of one and the same R. We have therefore

a random variable

H =
(
H1

1 , . . . ,H
1
m1
, . . . ,Hk

1 , . . . ,H
k
mk
, . . . ,Hn

1 , . . . ,H
n
mn

)
.
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If follows from the definition of selective influences that if
(
A1, . . . , An

)
"(

λ1, . . . , λn
)
, then, for every allowable treatment φ =

(
λ1, . . . , λn

)
,(

A1
φ, . . . , A

n
φ

)
∼
(
H1
λ1 , . . . ,H

n
λn
)
.

In other words, the existence of a jointly distributed vector of random vari-

ables H with this property is a necessary condition for
(
A1, . . . , An

)
"(

λ1, . . . , λn
)
.

Let us now assume that a vector H with the above property exists. Let

us define functions as we did it in the case with stochastic independence,

fk

(
i, h1

1, . . . , h
1
m1
, . . . , hk1, . . . , h

k
mk
, . . . , hn1 , . . . , h

n
mn

)
= hki .

Then (
A1
φ, . . . , A

n
φ

)
∼
(
H1
λ1 , . . . ,H

n
λn
)

=
(
f1

(
λ1, H

)
, . . . , fn (λn, H)

)
for every

(
λ1, . . . , λn

)
= φ ∈ Φ. This means that the existence of H is a

sufficient condition for
(
A1, . . . , An

)
"
(
λ1, . . . , λn

)
.

Summarizing, we have proved the following theorem.

Theorem 1.4 (Joint Distribution Criterion) Let
(
λ1, . . . , λn

)
be a vector

of inputs, with λk ∈ Λk = {1, . . . ,mk} (mk ≥ 1, k = 1, . . . , n). Let Φ ⊂
Λ1 × . . .× Λn be a nonempty set of allowable treatments. Let

(
A1
φ, . . . , A

n
φ

)
be a set of random variables jointly distributed for every φ ∈ Φ. Then(

A1, . . . , An
)
"
(
λ1, . . . , λn

)
if and only if there exists a vector of jointly distributed random variables

H =

(︷ ︸︸ ︷
H1

1 , . . . ,H
1
m1
, . . . ,

︷ ︸︸ ︷
Hk

1 , . . . ,H
k
mk
, . . . ,

︷ ︸︸ ︷
Hn

1 , . . . ,H
n
mn

)
,

(one variable per each value of each input) such that(
A1
φ, . . . , A

n
φ

)
∼
(
H1
λ1 , . . . ,H

n
λn
)

for every
(
λ1, . . . , λn

)
= φ ∈ Φ.

The vector H in this theorem is called a reduced coupling vector for the

family
((
A1
φ, . . . , A

n
φ

)
: φ ∈ Φ

)
(or for a given pattern of selective influ-

ences).

Remark 1.10 According to the general definition of a coupling (Section
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1.7), a coupling for the family
((
A1
φ, . . . , A

n
φ

)
: φ ∈ Φ

)
is any random vari-

able

H∗ =
((
H1
φ, . . . ,H

n
φ

)
: φ ∈ Φ

)
such that, for all φ ∈ Φ,(

A1
φ, . . . , A

n
φ

)
∼
(
H1
φ, . . . ,H

n
φ

)
.

The vector H of Theorem 1.4 is obtained from such a coupling by imposing

on it additional constraints: for any k = 1, . . . , n and any φ, φ′ ∈ Φ sharing

the same value of input λk,

Hk
φ = Hk

φ′ .

These constraints allow one to reduce all different occurrences of Hk in H to

one occurrence per each value of factor λk. Hence the adjective “reduced” in

the name for this special coupling. (In the literature on selective influences

the reduced coupling was also called a joint distribution vector, and a Joint

Distribution Criterion vector. We will not use these terms here.)

Theorem 1.4 is much more important than it may be suggested by its sim-

ple proof (essentially, by means of renaming functions of a random variable

into random variables and vice versa). The reasons for its importance are

two:

1. it is often easier to determine whether a coupling vector exists than

whether one can find certain functions of a single random variable (unless

the latter is taken to be the reduced coupling vector and the functions to

be its projections);

2. even when a reduced coupling vector is not explicitly constructed, its

existence provides insights into the nature of the random variable R in

the definition of selective influences.

The first of these reasons is yet another illustration of the fact that jointly

distributed random variables are not, as a rule, introduced as functions of a

single random variable (see Section 1.7). Take a simple example, when there

are two binary inputs λ1, λ2 (with values 1,2 each) paired with two binary

outputs (with values 1,2 each). Let the set of allowable treatments consist

of all four combinations,(
λ1 = 1, λ2 = 1

)
,
(
λ1 = 1, λ2 = 2

)
,
(
λ1 = 2, λ2 = 1

)
,
(
λ1 = 2, λ2 = 2

)
.

Note that 1 and 2 as values for the inputs are chosen merely for convenience.

We could replace them by any numbers or distinct symbols (say, �,� for λ1,
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and h,i for λ2). The existence of the jointly distributed vectors
(
A1
φ, A

2
φ

)
means that for each of the four treatments φ we are given four probabilities

of the form

Pr(A1
φ = 1, A2

φ = 1), Pr(A1
φ = 1, A2

φ = 2),

Pr(A1
φ = 2, A2

φ = 1), Pr(A1
φ = 2, A2

φ = 2).

Of course, the four probabilities sum to 1. Again, the use of 1 and 2 for values

here is arbitrary, other symbols, generally different for A1
φ and A2

φ, would do

as well. According to the Joint Distribution Criterion,
(
A1, A2

)
"
(
λ1, λ2

)
means the existence of four jointly distributed random variables

H =
(
H1

1 , H
1
2 , H

2
1 , H

2
2

)
,

with H1
1 corresponding to the first value of input λ1, H1

2 to the second value

of input λ1, etc., such that(
A1, A2

)
λ1=1,λ2=1

∼
(
H1

1 , H
2
1

)
,
(
A1, A2

)
λ1=1,λ2=2

∼
(
H1

1 , H
2
2

)
,(

A1, A2
)
λ1=2,λ2=1

∼
(
H1

2 , H
2
1

)
,
(
A1, A2

)
λ1=2,λ2=2

∼
(
H1

2 , H
2
2

)
.

This implies, of course, that H1
1 , H

1
2 , H

2
1 , H

2
2 are all binary random variables,

with values 1 and 2 each.

What is the meaning of saying that they are jointly distributed? The

meaning is that for any of the 2× 2× 2× 2 possible combinations of values

for H1
1 , H

1
2 , H

2
1 , H

2
2 we can find a probability,

Pr
(
H1

1 = i,H1
2 = i′, H2

1 = j,H2
2 = j′

)
= pii′jj′ ,

where i, j, i′, j′ ∈ {1, 2}. It does not matter what these probabilities pii′jj′

are, insofar as they

(i) are legitimate probabilities, that is, they are nonnegative and sum to 1

across the 16 values of H;

(ii) satisfy the 2-marginal constraints(
A1, A2

)
λ1=i,λ2=j

∼
(
H1
i , H

2
j

)
,

for all i, j ∈{1, 2}.
The latter translates into

pi1j1 + pi1j2 + pi2j1 + pi2j2 = Pr
(
H1

1 = i,H2
1 = j

)
= Pr

(
A1 = i, A2 = j

)
λ1=1,λ2=1

,

pi11j + pi12j + pi21j + pi22j = Pr
(
H1

1 = i,H2
2 = j

)
= Pr

(
A1 = i, A2 = j

)
λ1=1,λ2=2

,

p1ij1 + p1ij2 + p2ij1 + p2ij2 = Pr
(
H1

2 = i,H2
1 = j

)
= Pr

(
A1 = i, A2 = j

)
λ1=2,λ2=1

,

p1i1j + p1i2j + p2i1j + p2i2j = Pr
(
H1

1 = i,H2
1 = j

)
= Pr

(
A1 = i, A2 = j

)
λ1=2,λ2=2

.
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This is a simple system of four linear equations with 16 unknowns, subject

to being legitimate probabilities (i.e., being non-negative and summing to

1). We will discuss this algebraic structure in the next section, but it should

be clear that this is a much more transparent task than the one of finding

a random variable R and some functions, or proving that they cannot be

found.

Example 1.19 Let A1, A2 have values in {1,2} and depend on the factors

λ1 ∈ Λ1 = {1, 2} and λ2 ∈ Λ2 = {1, 2}. Let all four possible treatments be

allowable. Suppose we observe the following joint distributions of A1, A2 for

these treatments:

λ1 λ2 A1 A2 Pr
1 1 1 1 .140

1 2 .360
2 1 .360
2 2 .140

λ1 λ2 A1 A2 Pr
1 2 1 1 .198

1 2 .302
2 1 .302
2 2 .198

λ1 λ2 A1 A2 Pr
2 1 1 1 .189

1 2 .311
2 1 .311
2 2 .189

λ1 λ2 A1 A2 Pr
2 2 1 1 .460

1 2 .040
2 1 .040
2 2 .460

The question of whether
(
A1, A2

)
"
(
λ1, λ2

)
now reduces to finding a solu-

tion for the system of linear equations mentioned above. Let us substitute

the above observed probabilities into the system:

p1111 + p1112 + p1211 + p1212 = 0.140, p1111 + p1121 + p1211 + p1221 = 0.198,
p1121 + p1122 + p1221 + p1222 = 0.360, p1112 + p1122 + p1212 + p1222 = 0.302,
p2111 + p2112 + p2211 + p2212 = 0.360, p2111 + p2121 + p2211 + p2221 = 0.302,
p2121 + p2122 + p2221 + p2222 = 0.140, p2112 + p2122 + p2212 + p2222 = 0.198,

p1111 + p1112 + p2111 + p2112 = 0.189, p1111 + p1121 + p2111 + p2121 = 0.460,
p1121 + p1122 + p2121 + p2122 = 0.311, p1112 + p1122 + p2112 + p2122 = 0.040,
p1211 + p1212 + p2211 + p2212 = 0.311, p1211 + p1221 + p2211 + p2221 = 0.040,
p1221 + p1222 + p2221 + p2222 = 0.189, p1212 + p1222 + p2212 + p2222 = 0.460.

The values (found using the simplex linear programming algorithm)

p1111 = 0.067, p1211 = 0, p2111 = 0.122, p2211 = 0.04,
p1112 = 0, p1212 = 0.073, p2112 = 0, p2212 = 0.198,
p1121 = 0.131, p1221 = 0, p2121 = 0.14, p2221 = 0,
p1122 = 0.04, p1222 = 0.189, p2122 = 0, p2222 = 0

satisfy these equations, and as they are nonnegative and sum to one, they

represent a probability distribution. Thus, according to the Joint Distribu-

tion Criterion, the observed joint distributions satisfy selective influences.

�
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To illustrate the second reason for the importance of Theorem 1.4, we

consider the following question. By the definition of selective influences, the

proposition
(
A1, . . . , An

)
"
(
λ1, . . . , λn

)
means the existence of a random

variable R and functions f1, . . . , fn such that(
A1
φ, . . . , A

n
φ

)
∼
(
f1

(
λ1, R

)
, . . . , fn (λn, R)

)
for every

(
λ1, . . . , λn

)
= φ ∈ Φ. This definition says nothing about the nature

and complexity of R and the functions involved, even for the simplest observ-

able random variables
(
A1, . . . , An

)
φ
. In most applications

(
A1, . . . , An

)
φ

are random variables in the narrow sense (Section 1.4). It seems intuitive to

expect that in such cases R, if it exists, is also a random variable in the nar-

row sense. But this does not follow from the definition of selective influences.

Even if one manages to prove that for a given family of random variables(
A1, . . . , An

)
φ

in the narrow sense this definition is satisfied by no random

variable R in the narrow sense, we still do not know whether this means that

the selectiveness
(
A1, . . . , An

)
"
(
λ1, . . . , λn

)
is ruled out. What if there is

a random variable R of a much greater complexity (say, a random function

or a random set) for which one can find functions f1, . . . , fn as required by

the definition?

The Joint Distribution Criterion, however, allows one to rule out such a

possibility. Since the reduced coupling vector

H =
(
H1

1 , . . . ,H
1
m1
, . . . ,Hn

1 , . . . ,H
n
mn

)
,

if it exists, should satisfy(
A1
φ, . . . , A

n
φ

)
∼
(
H1
λ1 , . . . ,H

n
λn
)
,

it follows that, for any k and λk,

Hk
λk ∼ A

k
φ,

whenever the treatment φ contains λk. But this means that each Hk
λk

is a

random variable in a narrow sense, and from Section 1.4 we know then that

H is a random variable in the narrow sense. This constitutes a proof of the

following theorem, a simple corollary to the Joint Distribution Criterion.

Theorem 1.5 Let
(
λ1, . . . , λn

)
, Φ, and

(
A1
φ, . . . , A

n
φ

)
be the same as in

Theorem 1.4 Let, in addition,
(
A1
φ, . . . , A

n
φ

)
be random variables in the nar-

row sense. Then (
A1, . . . , An

)
"
(
λ1, . . . , λn

)
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if and only if there is a random variable R in the narrow sense and functions

f1, . . . , fn such that(
A1
φ, . . . , A

n
φ

)
∼
(
f1

(
λ1, R

)
, . . . , fn (λn, R)

)
for every

(
λ1, . . . , λn

)
= φ ∈ Φ.

If one feels dissatisfied with considering vectors of random variables on a

par with “single” random variables, this dissatisfaction is not well-grounded.

The fact is, the dimensionality of vectors of random variables in the narrow

sense is not essential. Consider, for example, the reduced coupling vector

H =
(
H1

1 , H
1
2 , H

2
1 , H

2
2

)
,

constructed earlier for two binary random variables selectively influenced by

two binary inputs. Clearly, in all considerations this four-component vector

of binary random variables can be replaced with a single 16-valued ran-

dom variable, H ′. Let these 16 values be 0, . . . , 15. The two variables are

equivalent if one puts

Pr
(
H1

1 = i,H1
2 = i′, H2

1 = j,H2
2 = j′

)
= Pr

(
H ′ = (i− 1) 23 +

(
i′ − 1

)
22 + (j − 1) 2 +

(
j′ − 1

))
.

In particular, any functions of H can be presented as functions of H ′.

In the case of continuous random variables the situation is, in a sense, even

simpler, although we will have to omit the underlying justification. It follows

from the theory of Borel-equivalent spaces (which is part of descriptive set

theory), that any vector of continuous random variables

R =
(
R1, . . . , Rk

)
,

can be presented as a function of any continuous variable R′ with an atom-

less distribution on an interval of real numbers. The “atomlessness” means

that the sigma-algebra of R′ contains no null-set whose probability measure

is not zero. Simple examples are uniformly and normally distributed ran-

dom variables. If the vector is discrete, the previous statement applies with

no modifications (although we know that in this case one can also choose a

discrete R′). It follows that the statement also applies to mixed vectors, con-

taining both discrete and continuous random variables (or vectors thereof,

or vectors of vectors thereof, etc.)

We can complement, therefore, Theorem 1.5 with the following statement.

Theorem 1.6 Under the conditions of Theorem 1.5, the random variable
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R can always be chosen to be any continuous random variable with an atom-

less distribution on an interval of real numbers. If all the random variables

A1
φ, . . . , A

n
φ are discrete (in particular, have finite numbers of values), then

R can be chosen to be discrete (respectively, have finite number of values).

We have quite a bit more specificity now than based on the initial defini-

tion of selective influences. And it is achieved due to the Joint Distribution

Criterion almost “automatically.”

Theorem 1.4 is not restricted to finite-valued inputs. Nor is it restricted

to a finite number of inputs, or to outputs of a specific kind. It is completely

general. For the reader’s convenience, we formulate here the general version

of this theorem, avoiding all elaborations.

Theorem 1.7 (Joint Distribution Criterion (general version)) Let
(
λk : k ∈ K

)
be an indexed family of inputs, with λk ∈ Λk 6= ∅, for all k ∈ K. Let

Φ ⊂
∏
k∈K Λk be a nonempty set of allowable treatments. Let

(
Akφ : k ∈ K

)
be a family of random variables jointly distributed for every φ ∈ Φ. Then(

Ak : k ∈ K
)
"
(
λk : k ∈ K

)
if and only if there exists an indexed family of jointly distributed random

variables

H =
(
Hk
λk : λk ∈ Λk, k ∈ K

)
,

(one variable per each value of each input) such that(
Akφ : k ∈ K

)
∼
(
Hk
λk : k ∈ K

)
for every

(
λk : k ∈ K

)
= φ ∈ Φ.

1.13 Properties of selective influences and tests

Certain properties of selective influences (in the canonical form) are imme-

diately obvious.

The first one is nestedness with respect to input values: if random out-

puts A1, . . . , An are selectively influenced by inputs λ1, . . . , λn, with sets

of possible values Λ1, . . . ,Λn, then the same random outputs are selec-

tively influenced by inputs λ′1, . . . , λ′n whose sets of possible values are

Λ′1 ⊂ Λ1, . . . ,Λ′n ⊂ Λn. Every variable is essentially the set of its possi-

ble values. Inputs are no exception. In fact, in a more rigorous development

λ would be reserved for input values, whereas input themselves, considered

as variables, would be identified by Λ (see Remark 1.7). When a set of an
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input’s values changes, the input is being replaced by a new one. The nest-

edness property in question tells us that if the change consists in removing

some of the possible values of some of the inputs, the selectiveness pat-

tern established for the original inputs cannot be violated. This does not, of

course, work in the other direction: if we augment Λ1, . . . ,Λn by adding to

them new elements, then the initial pattern of selectiveness may very well

disappear.

The second property is nestedness with respect to inputs and outputs (in

a canonical diagram they are in a one-to-one correspondence): if a vector of

random outputs is selectively influenced by a vector of inputs, then any sub-

vector of the random outputs is selectively influenced by the corresponding

subvector of the inputs. In symbols, if(
A1, . . . , An

)
"
(
λ1, . . . , λn

)
and i1, . . . , ik ∈ {1, . . . , n}, then(

Ai1 , . . . , Aik
)
"
(
λi1 , . . . , λik

)
.

Note that the set of allowable treatments has to be redefined whether we

eliminate certain input-output pairs or certain input values. In the latter

case, the new set of allowable treatments is the largest Φ′ ⊂ Λ′1 × . . .×Λ′n,

such that Φ′ ⊂ Φ. In the case we drop input-output pairs, the new set of

allowable treatments is the largest Φ′′ ⊂ Λi1 × . . . × Λik , such that every

φ′′ ∈ Φ′′ is a part of some φ ∈ Φ.

Both these nestedness properties follow from the fact that any subset of

random variables that are components of a reduced coupling vector

H =
(
H1

1 , . . . ,H
1
m1
, . . . ,Hn

1 , . . . ,H
n
mn

)
,

are also jointly distributed. When we eliminate an ith value of input k,

we drop from this vector Hk
i . When we eliminate an input k, we drop the

subvector Hk
1 , . . . ,H

k
mk

. In both cases the resulting H ′ is easily checked to be

a reduced coupling vector for the redefined sets of treatments and outputs.

By similar arguments one can establish that a pattern of selective influ-

ences is well-behaved in response to all possible groupings of the inputs, with

or without a corresponding grouping of outputs: thus, if(
A1, . . . , Ak, . . . , Al, . . . , An

)
"
(
λ1, . . . , λk, . . . , λl, . . . , λn

)
,

then(
A1, . . . , Ak, . . . , Al, . . . , An

)
"
(
λ1, . . . ,

(
λk, λl

)
, . . . ,

(
λk, λl

)
, . . . , λn

)



1.13 Properties of selective influences and tests 47

and (
A1, . . . ,

(
Ak, Al

)
, . . . ,

(
Ak, Al

)
, . . . , An

)
"
(
λ1, . . . ,

(
λk, λl

)
, . . . ,

(
λk, λl

)
, . . . , λn

)
.

We omit the details related to redefinitions of allowable treatments.

A simple consequence of the nestedness with respect to input-output pairs

turns out to be of a great importance for determining if a selectiveness pat-

tern is present. This consequence is called complete marginal selectivity : if(
A1, . . . , An

)
"
(
λ1, . . . , λn

)
and i1, . . . , ik ∈ {1, . . . , n}, then the distribu-

tion of
(
Ai1φ , . . . , A

ik
φ

)
depends only on

(
λi1 , . . . , λik

)
. In other words, if φ

and φ′ include the same subset
(
λi1 , . . . , λik

)
,(

Ai1φ , . . . , A
ik
φ

)
∼
(
Ai1φ′ , . . . , A

ik
φ′

)
.

In particular (simple marginal selectivity),

Aiφ ∼ Aiφ′

for any φ and φ′ that share a value of λi (i = 1, . . . , n). The importance of

marginal selectivity is that it is easy to check, ruling out selective influences

whenever it is found violated.

Example 1.20 Let A1, A2 have values in {1, 2} and depend on the external

factors λ1 ∈ Λ1 = {1, 2} and λ2 ∈ Λ2 = {1, 2}. Let the joint distribution of

A1, A2 for each treatment (all four being allowable) be as follows:

λ1 = 1, λ2 = 1 A2 = 1 A2 = 2 λ1 = 1, λ2 = 2 A2 = 1 A2 = 2
A1 = 1 .2 .2 .4 A1 = 1 .3 .1 .4
A1 = 2 .3 .3 .6 A1 = 2 .2 .4 .6

.5 .5 .5 .5

λ1 = 2, λ2 = 1 A2 = 1 A2 = 2 λ1 = 2, λ2 = 2 A2 = 1 A2 = 2
A1 = 1 .4 .3 .7 A1 = 1 .3 .4 .7
A1 = 2 .1 .2 .3 A1 = 2 .1 .2 .3

.5 .5 .4 .6

Marginal selectivity here is violated because the marginal distribution of A2

changes when λ2 = 2 and λ1 changes from 1 to 2. �

Marginal selectivity is strictly weaker than selective influences. The latter

do imply marginal selectivity, but marginal selectivity can very well hold in

the absence of selective influences.
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Example 1.21 Consider the following joint distributions:

λ1 = 1, λ2 = 1 A2 = 1 A2 = 2 λ1 = 1, λ2 = 2 A2 = 1 A2 = 2
A1 = 1 .5 0 .5 A1 = 1 .5 0 .5
A1 = 2 0 .5 .5 A1 = 2 0 .5 .5

.5 .5 .5 .5

λ1 = 2, λ2 = 1 A2 = 1 A2 = 2 λ1 = 2, λ2 = 2 A2 = 1 A2 = 2
A1 = 1 .5 0 .5 A1 = 1 0 .5 .5
A1 = 2 0 .5 .5 A1 = 2 .5 0 .5

.5 .5 .5 .5

Marginal selectivity is trivially satisfied as all marginals are uniform. How-

ever,
(
A1, A2

)
6"
(
λ1, λ2

)
in this case. The joint distribution criterion would

require the existence of a jointly distributed vector H whose components

satisfy
(
A1
ij , A

2
ij

)
∼
(
H1
i , H

2
j

)
for i, j ∈ {1, 2}. But combining this with the

above joint distributions, we obtain

H1
1 = H2

1 , H1
1 = H2

2 , H1
2 = H2

1 , H1
2 = 3−H2

2 ,

which yields the contradiction

3−H2
2 = H2

2 .

�

Another property of selective influences is that if
(
A1, . . . , An

)
"
(
λ1, . . . , λn

)
,

and if, for all φ =
(
λ1, . . . , λn

)
∈ Φ,

B1
φ = g1

(
λ1, A1

φ

)
, . . . , Bn

φ = gn
(
λn, Anφ

)
,

then
(
B1, . . . , Bn

)
"
(
λ1, . . . , λn

)
. The functions g1, . . . , gn are referred to

as input-value-specific transformations of random outputs. The property in

question therefore is the invariance of selective influences, if established, with

respect to such transformations.

Let us make sure that this property is true. According to the general

definition, we have a random variable R and functions f1, . . . , fn such that(
A1
φ, . . . , A

n
φ

)
∼
(
f1

(
λ1, R

)
, . . . , fn (λn, R)

)
,

for every φ =
(
λ1, . . . , λn

)
∈ Φ. But then(

B1
φ, . . . , B

n
φ

)
∼
(
g1

(
λ1, f1

(
λ1, R

))
, . . . , gn (λn, fn (λn, R))

)
,

and every gk
(
λk, fk

(
λk, R

))
is some function f∗k

(
λk, R

)
. The vectors

(
B1
φ, . . . , B

n
φ

)
therefore satisfy the definition too.
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As a special case, the transformation may not depend on input values,

B1
φ = g1

(
A1
φ

)
, . . . , Bn

φ = gn
(
Anφ
)
.

This would include all possible renamings and groupings of the values of the

random outputs: a pattern of selective influences is preserved under all such

transformations. For instance, one can rename values 1, 2 of a binary output

into t,u, or one can group values 1, 2, 3, 4 into “cruder” values, by means

of a transformation like

1 7→ t, 2 7→ t, 3 7→ u, 4 7→ u.

The meaning of the input-value-specificity is this. We choose a k ∈ {1, . . . , n}
and assume, for simplicity, that λk has discrete values, 1, 2, . . .. Let Akφ be

transformed into random variables Bk
1,φ, Bk

2,φ, etc., all sharing the same set

of possible values and the same sigma-algebra. We know that one can replace

Ak in (
A1, . . . Ak, . . . , An

)
"
(
λ1, . . . , λk, . . . , λn

)
with any of these new random variables,(

A1, . . . Bk
1 , . . . , A

n
)
"
(
λ1, . . . , λk, . . . , λn

)
,(

A1, . . . Bk
2 , . . . , A

n
)
"
(
λ1, . . . , λk, . . . , λn

)
,

etc.

The input-value-specificity is involved if one forms a random variable

Bk
φ =


Bk

1,φ if λk = 1

Bk
2,φ if λk = 2

etc.

The invariance property says that this random variable, too, can replace Ak

in a pattern of selective influences,(
A1, . . . Bk, . . . , An

)
"
(
λ1, . . . , λk, . . . , λn

)
.

Note that the property in question works in one direction only: if
(
A1, . . . , An

)
"(

λ1, . . . , λn
)

then
(
B1, . . . , Bn

)
"
(
λ1, . . . , λn

)
. It is perfectly possible (if we

use grouping of values) that
(
A1, . . . , An

)
6"
(
λ1, . . . , λn

)
but following an

input-value-specific transformation,
(
B1, . . . , Bn

)
"
(
λ1, . . . , λn

)
. However,

if the transformation B1
φ = g1(λ1, A1

φ), . . . , Bn
φ = gn(λn, Anφ), is reversible,

that is, there exist another transformationA1
φ = h1(λ1, B1

φ), . . . , Anφ = hn(λn, Bn
φ)
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back to the original variables, then
(
A1, . . . , An

)
"
(
λ1, . . . , λn

)
if and only

if
(
B1, . . . , Bn

)
"
(
λ1, . . . , λn

)
.

Example 1.22 Consider the random variables A1, A2 with values in {1, 2},
depending on the input factors λ1 ∈ {1, 2}, λ2 ∈ {1, 2}, and having the

following joint distributions at the four possible treatments:

λ1 = 1, λ2 = 1 A2 = 1 A2 = 2 λ1 = 1, λ2 = 2 A2 = 1 A2 = 2
A1 = 1 0.3 0.4 0.7 A1 = 1 0.35 0.35 0.7
A1 = 2 0.1 0.2 0.3 A1 = 2 0.15 0.15 0.3

0.4 0.6 0.5 0.5

λ1 = 2, λ2 = 1 A2 = 1 A2 = 2 λ1 = 2, λ2 = 2 A2 = 1 A2 = 2
A1 = 1 0.32 0.48 0.8 A1 = 1 0.45 0.35 0.8
A1 = 2 0.08 0.12 0.2 A1 = 2 0.05 0.15 0.2

0.4 0.6 0.5 0.5

We will see in the next section that
(
A1, A2

)
"
(
λ1, λ2

)
is satisfied in this

case. Let us define the input value specific transformations B1 = g1(λ1, A1)

and B2 = g2(λ2, A2), where

g1(1, {1, 2}) = {+1,−1}, g2(1, {1, 2}) = {7, 3},
g1(2, {1, 2}) = {−1,+1}, g2(2, {1, 2}) = {3, 7}.

As we see, A1 = 1 is mapped into B1 = +1 or B1 = −1 according as λ1 is

1 or 2, A2 = 1 is mapped into B2 = 7 or B2 = 3 according as λ2 is 1 or 2,

etc. We obtain the following joint distributions

λ1 = 1, λ2 = 1 B2 = 7 B2 = 3 λ1 = 1, λ2 = 2 B2 = 7 B2 = 3
B1 = +1 0.3 0.4 0.7 B1 = +1 0.35 0.35 0.7
B1 = −1 0.1 0.2 0.3 B1 = −1 0.15 0.15 0.3

0.4 0.6 0.5 0.5

λ1 = 2, λ2 = 1 B2 = 7 B2 = 3 λ1 = 2, λ2 = 2 B2 = 7 B2 = 3
B1 = +1 0.08 0.12 0.2 B1 = +1 0.15 0.05 0.2
B1 = −1 0.32 0.48 0.8 B1 = −1 0.35 0.45 0.8

0.4 0.6 0.5 0.5

We know that the transformed variables satisfy
(
B1, B2

)
"
(
λ1, λ2

)
because(

A1, A2
)
"
(
λ1, λ2

)
. �

In the subsequent sections we will consider several tests of selective influ-

ences. Such a test is always a statement whose truth value (whether it is true

or false) determines whether a given pattern of selective influences holds or

does not hold. The truth value of the test statement must be determinable

from the distributions of
(
A1
φ, . . . , A

n
φ

)
for all allowable φ. If its truth implies(

A1, . . . , An
)
"
(
λ1, . . . , λn

)
, then the test provides a sufficient condition for
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selective influences; if its falsity implies
(
A1, . . . , An

)
6"
(
λ1, . . . , λn

)
, then

the test provides a necessary condition for selective influences. If the test

provides both necessary and sufficient condition, it is a criterion.

The distribution of
(
A1
φ, . . . , A

n
φ

)
, if the random variables are known

from their observed realizations, cannot be known precisely, because prob-

abilities are never observable. All our tests require that the distributions

of
(
A1
φ, . . . , A

n
φ

)
, or at least some parameters thereof, be known precisely.

Therefore they can only be applied to empirical observations if the latter are

replaced by theoretical distributions. This can be done based on statistical

considerations, outside the scope of the tests themselves. In particular, if all

sample sizes are sufficiently large, theoretical distributions can be assumed

to be so close to the empirical ones that their difference cannot affect the

outcome of a test.

As follows from the discussion above, the most basic and obvious test

of selective influences is the (complete) marginal selectivity test. This is a

necessary condition for selective influences: if, at least for one pair of distinct

treatments φ and φ′ that include one and the same subvector
(
λi1 , . . . , λik

)
,

the distributions of the k-marginal random variables
(
Ai1φ , . . . , A

ik
φ

)
and(

Ai1φ′ , . . . , A
ik
φ′

)
are not the same, then

(
A1, . . . , An

)
6"
(
λ1, . . . , λn

)
.

1.14 Linear Feasibility Test

In this section we will discuss a test which is both a necessary and sufficient

condition for the selective influences in the case when the number of input-

output pairs, the set of values of each input, and the set of possible values

of each random output are all finite. Let us enumerate, for k = 1, . . . , n,

the values of each input λk as 1, . . . ,mk, and the values of each random

output Ak as 1, . . . , vk. In Section 1.12 we discussed the case n = 2, m1 =

m2 = 2, and v1 = v2 = 2. We determined there that the question of whether(
A1, A2

)
"
(
λ1, λ2

)
translates into a question of whether certain linear

equations have a solution subject to certain constraints. We will see that

this is the case generally.

The observable distributions of
(
A1
φ, . . . , A

n
φ

)
are represented by the prob-

abilities of the events that can be described as(︷ ︸︸ ︷
A1 = a1, . . . , A

k = ak, . . . , A
n = an;

︷ ︸︸ ︷
λ1 = l1, . . . , λ

k = lk, . . . , λ
n = ln

)
,

where ak ∈ {1, . . . , vk} (output values) and lk ∈ {1, . . . ,mk} (input values).
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Let us form a matrix M whose rows are enumerated (labeled) by all such

vectors. We only consider the vectors with allowable treatments,

φ =
(
λ1 = l1, . . . , λ

k = lk, . . . , λ
n = ln

)
∈ Φ.

If the number of the allowable treatments is t (between 1 and m1×. . .×mn),

then the number of the rows in M is t× v1 × . . .× vn.

The columns of the matrix M are enumerated (labeled) by the vectors of

the form(︷ ︸︸ ︷
H1

1 = h1
1, . . . H

1
m1

= h1
m1
, . . . ,

︷ ︸︸ ︷
Hn

1 = hn1 , . . . ,H
n
mn

= hnmn

)
,

where hki ∈ {1, . . . , vk}. Such vectors represent events whose probabilities

define the distribution of a reduced coupling vector H (if one exists). The

number of such events, hence the number of the columns in M is (v1)m1 ×
. . .× (vn)mn (where the superscripts represent conventional exponents).

We also form a column vector P whose elements are labeled in the same

way and in the same order as the rows of the matrix M , and a column vector

Q whose elements are labeled in the same way and in the same order as the

columns of the matrix M .

Let us now fill in the entries of the vectors P,Q, and the matrix M . The

matrix M is Boolean: it is filled with 1’s and 0’s. Consider a cell (I, J)

belonging to the column labeled

J =

(︷ ︸︸ ︷
H1

1 = h1
1, . . . H

1
m1

= h1
m1
, . . . ,

︷ ︸︸ ︷
Hn

1 = hn1 , . . . ,H
n
mn

= hnmn

)
and to the row labeled

I =

(︷ ︸︸ ︷
A1 = a1, . . . , A

k = ak, . . . , A
n = an;

︷ ︸︸ ︷
λ1 = l1, . . . , λ

k = lk, . . . , λ
n = ln

)
.

In the vector-label J pick the entries

H1
l1 = h1

l1 , . . . ,H
k
lk

= hklk , . . . ,H
n
ln = hnln

corresponding to the values of
(
λ1, . . . , λn

)
indicated in the vector-label I.

If (
h1
l1 , . . . , h

k
lk
, . . . , hnln

)
= (a1, . . . , ak, . . . , an)

then the cell (I, J) should be filled with 1; otherwise its value is 0.

The vector P is filled with the probabilities

Pr
(
A1 = a1, . . . , A

n = an
)
φ=(λ1=l1,...,λn=ln)

.
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For any allowable φ, the probabilities across all possible combinations of

(a1, . . . , an) sum to 1. These probabilities are assumed to be known.

The vector Q is filled with the probabilities

Pr
(
H1

1 = h1
1, . . . ,H

1
m1

= h1
m1
, . . . ,Hn

1 = hn1 , . . . ,H
n
mn

= hnmn

)
,

which sum to 1 across all possible values of
(
h1

1, . . . , h
1
m1
, . . . , hn1 , . . . , h

n
mn

)
.

These probabilities are not known, they have to be found or determined not

to exist.

Example 1.23 Let us now apply these general definitions to the simplest

nontrivial case n = 2, m1 = m2 = 2, v1 = v2 = 2 considered in Section 1.12.

The matrix M filled with binary values is (replacing 0 with “·” for better

legibility)

H1
1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

H1
2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2

H2
1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

H2
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

λ1 = 1, λ2 = 1

A1 = 1, A2 = 1 1 1 · · 1 1 · · · · · · · · · ·
A1 = 1, A2 = 2 · · 1 1 · · 1 1 · · · · · · · ·
A1 = 2, A2 = 1 · · · · · · · · 1 1 · · 1 1 · ·
A1 = 2, A2 = 2 · · · · · · · · · · 1 1 · · 1 1

λ1 = 1, λ2 = 2

A1 = 1, A2 = 1 1 · 1 · 1 · 1 · · · · · · · · ·
A1 = 1, A2 = 2 · 1 · 1 · 1 · 1 · · · · · · · ·
A1 = 2, A2 = 1 · · · · · · · · 1 · 1 · 1 · 1 ·
A1 = 2, A2 = 2 · · · · · · · · · 1 · 1 · 1 · 1

λ1 = 2, λ2 = 1

A1 = 1, A2 = 1 1 1 · · · · · · 1 1 · · · · · ·
A1 = 1, A2 = 2 · · 1 1 · · · · · · 1 1 · · · ·
A1 = 2, A2 = 1 · · · · 1 1 · · · · · · 1 1 · ·
A1 = 2, A2 = 2 · · · · · · 1 1 · · · · · · 1 1

λ1 = 2, λ2 = 2

A1 = 1, A2 = 1 1 · 1 · · · · · 1 · 1 · · · · ·
A1 = 1, A2 = 2 · 1 · 1 · · · · · 1 · 1 · · · ·
A1 = 2, A2 = 1 · · · · 1 · 1 · · · · · 1 · 1 ·
A1 = 2, A2 = 2 · · · · · 1 · 1 · · · · · 1 · 1

The vector P consists of the observed probabilities corresponding to the row

labels of the matrix, and the vector Q consists of the joint probabilities of

the coupling vector H =
(
H1

1 , H
1
2 , H

2
1 , H

2
2

)
as indicated in the column labels

of the matrix. Using the observed probabilities of Example 1.22 we obtain

P = [.3, .4, .1, .2, .35, .35, .15, .15, .08, .12, .32, .48, .15, .05, .35, .45]T .

�

Theorem 1.8 If the sets of values for all n inputs and all n random
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outputs are finite, then, using the notation of this section,(
A1, . . . , An

)
"
(
λ1, . . . , λn

)
holds if and only if the system of linear equations

MQ = P

has a solution Q ≥ 0 (the inequality meaning that the elements of Q are

non-negative).

Without the non-negativity constraint, the system MQ = P always has

solutions, because the number of the unknowns (elements of Q) equals or

exceeds the rank of the matrix M , which can be shown to never exceed

(m1 (v1 − 1) + 1)× . . .× (mn (vn − 1) + 1) .

Moreover, the structure of the matrix M is such that that any solution for Q

should automatically have its elements summing to 1. The latter therefore

is not a constraint. However, it is not guaranteed that Q ≥ 0: it is possible

that all solutions for Q have some of the elements negative, in which case

our test establishes that
(
A1, . . . , An

)
6"
(
λ1, . . . , λn

)
.

Let us introduce a function

Sol (M,P )

that attains two values: “True,” if MQ = P has a non-negative solution,

and “False,” if such a solution does not exist. Note that M is an argument

that is determined uniquely by the format of the problem: the number of

input-output pairs and number of possible values for inputs and outputs.

The task of computing Sol (M,P ) is a standard feasibility problem of the

area of linear algebra called linear programming. Due to this term, the test

in question is called the linear feasibility test,(
A1, . . . , An

)
"
(
λ1, . . . , λn

)
if and only if Sol (M,P ) = True.

It is known from linear programming that Sol (M,P ) can always be com-

puted.

Example 1.24 Let us apply the linear feasibility test to the matrix M and

vector P of Example 1.23. Using the simplex linear programming algorithm,

we obtain the solution

Q = [.03, 0, 0, 0, 0, .27, .32, .08, 0, .05, .12, 0, 0, .05, .03, .05]T ≥ 0

satisfyingMQ = P . This means that Sol(M,P ) = “True”, hence
(
A1, A2

)
"(

λ1, λ2
)
.
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The (complete) marginal selectivity test mentioned in the previous section

is part of the linear feasibility test. If the former is violated, so will also the

latter. It follows from the structure of the matrix M , as explained in the

following example.

Example 1.25 Consider the matrix of Example 1.23. If
(
A1, A2

)
"
(
λ1, λ2

)
is satisfied for a given vector P of observed probabilities, then we know that

there exists a vector Q ≥ 0 such that MQ = P . The marginal probabilities of

A1 and A2 within each treatment are obtained by summing certain elements

of P . However, as MQ = P , we can obtain these marginal probabilities also

by summing certain rows of M and then multiplying these summed rows by

Q. Thus, if we sum the rows of M corresponding to the same value of A1

within each treatment, we obtain

λ1 = 1, λ2 = 1
A1 = 1 1 1 1 1 1 1 1 1 · · · · · · · ·
A1 = 2 · · · · · · · · 1 1 1 1 1 1 1 1

λ1 = 1, λ2 = 2
A1 = 1 1 1 1 1 1 1 1 1 · · · · · · · ·
A1 = 2 · · · · · · · · 1 1 1 1 1 1 1 1

λ1 = 2, λ2 = 1
A1 = 1 1 1 1 1 · · · · 1 1 1 1 · · · ·
A1 = 2 · · · · 1 1 1 1 · · · · 1 1 1 1

λ1 = 2, λ2 = 2
A1 = 1 1 1 1 1 · · · · 1 1 1 1 · · · ·
A1 = 2 · · · · 1 1 1 1 · · · · 1 1 1 1

As the rows corresponding to the marginal probabilities of A1 are identical

between the treatments with λ1 = 1 and between the treatments with λ1 =

2, we see that the marginal distribution of A1 does not depend on λ2. If we

then sum the rows of M corresponding to the same value of A2 within each

treatment, we obtain

λ1 = 1, λ2 = 1
A2 = 1 1 1 · · 1 1 · · 1 1 · · 1 1 · ·
A2 = 2 · · 1 1 · · 1 1 · · 1 1 · · 1 1

λ1 = 1, λ2 = 2
A2 = 1 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 ·
A2 = 2 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1

λ1 = 2, λ2 = 1
A2 = 1 1 1 · · 1 1 · · 1 1 · · 1 1 · ·
A2 = 2 · · 1 1 · · 1 1 · · 1 1 · · 1 1

λ1 = 2, λ2 = 2
A2 = 1 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 ·
A2 = 2 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1

and we can see that the marginal distribution of A2 does not depend on λ1.

Thus, linear feasibility test includes the test for marginal selectivity, so if

the latter is violated, the former fails. �

One may feel that Sol (M,P ) is not a “true” function, as it requires a

computer algorithm to be computed, and it is not presented in an analytic

form. Such a misgiving is not well-founded. An analytic (or closed-form)

solution is merely one that can be presented in terms of familiar functions
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and operations. For example, if a solution of a problem involves the standard

normal integral

N (t) =
1√
2π

∫ t

−∞
exp

(
−z2/2

)
dz,

the solution may or may not be called analytic depending on how familiar

and easily computable this function is. In the past, N (t) could be viewed as

“less analytic” than exp (x), and in Napier’s time exp (x) would be viewed as

“less analytic” than x2. Familiarity is not a mathematical category, and the

existence of a rigorous definition of a function combined with an algorithm

allowing one to compute it to a desired level of precision is all one needs to

use it in a solution to a problem. The computational complexity, of course,

may be a concern. In our case, however, it is known that as the size of the

matrix M increases, the computational time required to compute Sol (M,P )

increases only as a polynomial function of this size (rather than exponentially

or even faster). This makes the linear feasibility test practical.

It still may be of interest to see whether the linear feasibility test could

be formulated in terms of a system of equalities and inequalities involving

the entries of the vector P alone. This can always be achieved, with every

linear feasibility problem. These equalities and inequalities, in fact, can be

generated by a computer algorithm (called a facet enumeration algorithm).

Example 1.26 Geometrically, the linear feasibility test checks if P is

within the convex polytope determined by points MQ such that Q ≥ 0,∑
Q = 1. The columns of M correspond to the vertices of this polytope.

A facet enumeration algorithm transforms this vertex representation of the

polytope to the so-called half-plane representation, that is, to a representa-

tion of the form

M1P ≥ Q1, M2P = Q2,

where M1,M2 are matrices and Q1, Q2 are vectors. For our 16× 16 example

matrix, this yields

M1 =



1 0 0 0 0 0 1 0 0 1 0 0 -1 0 0 0

0 1 0 0 0 0 1 0 1 0 0 0 -1 0 0 0

0 0 1 0 1 0 0 0 0 1 0 0 -1 0 0 0

0 0 0 1 1 0 0 0 1 0 0 0 -1 0 0 0

1 1 1 0 -1 0 0 0 -1 0 0 0 1 0 0 0

1 1 0 1 -1 0 0 0 0 -1 0 0 1 0 0 0

1 0 1 1 0 0 -1 0 -1 0 0 0 1 0 0 0

0 1 1 1 0 0 -1 0 0 -1 0 0 1 0 0 0


Q1 =



0

0

0

0

0

0

0

0
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and

M2 =



1 1 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 -1 0 -1 0 0 0 0 0

0 1 0 1 0 0 0 0 0 -1 0 -1 0 0 0 0

0 0 1 1 0 0 -1 -1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 -1 0 -1 0

0 0 0 0 0 0 0 0 1 1 0 0 -1 -1 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 -1 0 -1 0 -1 -1 0 0 1 0 0 -1


Q2 =



0

0

0

0

0

0

1

0


.

The equations M2P = Q2 of this representation always correspond to the

marginal selectivity constraints. Thus, a vector P of observed probabili-

ties satisfying marginal selectivity satisfies selective influences if and only if

M1P ≥ Q1. Assuming marginal selectivity, M1P ≥ Q1 can in this case also

be simplified into the four double-inequalities

0 ≤ pi· + p·j + pi′j′ − pij′ − pi′j′ − pi′j ≤ 1, i 6= i′, j 6= j′,

where we denote

pi· = Pr(A1 = 1)φ=(λ1=i,λ2=·),

p·j = Pr(A2 = 1)φ=(λ1=·,λ2=j),

pij = Pr(A1 = 1, A2 = 1)φ=(λ1=i,λ2=j)

(the definition of pi· and p·j presupposes marginal selectivity). These are

known as the Bell/CHSH/Fine inequalities in quantum mechanics. �

In the same way, the representation as inequalities can be obtained for

any linear feasibility test matrix M . It should be noted, however, that the

number of the inequalities increases explosively as the size of the matrix M

increases. Thus, for three pairs of completely crossed binary inputs and three

binary random outputs, the number of independent equalities representing

marginal selectivity is 42, and the number of inequalities is 53792. From a

practical point of view, therefore, computing Sol (M,P ) directly is a better

approach in all but the simplest cases.

1.15 Distance Tests

Let us establish some general terminology. A pseudo-quasi-metric (or p.q.-

metric, for short) on a nonempty set X is defined as a function d : X×X →
R+ (set of non-negative real numbers), such that, for any x, y, z ∈ X,

(1) (zero property) d (x, x) = 0,
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(2) (triangle inequality) d (x, y) + d (y, z) ≥ d (x, z).

A p.q.-metric that satisfies, in addition,

(3) (symmetry) d (x, y) = d (y, x),

is called a pseudo-metric. A p.q.-metric that satisfies

(4) (positivity) if x 6= y, then d (x, y) > 0,

is called a quasi-metric. Finally, a p.q.-metric that satisfies both (3) and (4)

is called a metric. The terminology is not well-established and varies from

one area or application to another.

Remark 1.11 To refer to the value d (x, y) of a metric, pseudo-metrics,

quasi-metrics, or a p.q.-metric at a specific pair of points (x, y), one usually

uses the generic term “distance,” adding the corresponding prefixes (pseudo,

quasi, or p.q.) only if it is required for disambiguation. Thus, the value of

a p.q.-metric for a specific pair (x, y) can be called the distance from x to

y, or the p.q.-distance from x to y. (For pseudo-metrics, “from x to y” can

be replaced with “between x and y.”) The term “distance” can also be used

(with or without the prefixes) to refer to the functions themselves. Therefore

“p.q.-metric tests” below can also be referred to as “distance tests” or “p.q.-

distance tests.”

The nature of the set X in the definition is entirely arbitrary. We are

interested in a set of jointly distributed random variables, that is, those

representable as functions of one and the same random variable. A p.q.-

metric on such a set is a function d mapping pairs of random variables

into non-negative real numbers, such that d (R,R) = 0 and d
(
R1, R2

)
+

d
(
R2, R3

)
≥d
(
R1, R3

)
, for any random variables R1, R2, R3 in the set. We

assume that d
(
R1, R2

)
is entirely determined by the joint distribution of(

R1, R2
)
. In other words, it does not depend on the identifying label of the

pair (or on how R1 and R2 are presented as functions of a common random

variable).

An immediate consequence (and generalization) of the triangle inequality

is the following chain inequality : if R1, . . . , Rl are elements of X (l ≥ 3), not

necessarily distinct, then

d
(
R1, Rl

)
≤

l∑
i=2

d
(
Ri−1, Ri

)
.

This inequality, as it turns out, can be utilized to construct tests of selective

influences.
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Suppose that the random outputs
(
A1
φ, . . . , A

n
φ

)
across all φ ∈ Φ be-

long to a certain type, or class of random variables (e.g., those in the nar-

row sense, or with a finite number of values, etc.). We continue to con-

sider, for simplicity, inputs with finite number of values each. We know that(
A1, . . . , An

)
"
(
λ1, . . . , λn

)
if and only if there exists a reduced coupling

vector H. Assuming that it does exist, its elements are of the same type, or

class, as
(
A1
φ, . . . , A

n
φ

)
, and any l ≥ 3 of these elements,

Hk1
j1
, Hk2

j2
, . . . ,Hkl

jl

can be used to form a chain inequality,

d
(
Hk1
j1
, Hkl

jl

)
≤

l∑
i=2

d
(
H
ki−1

ji−1
, Hki

ji

)
.

Let us choose these elements of H so that λk1 = j1 and λkl = jl belong to

some allowable treatment φ1k, and each pair λki−1 = ji−1, λ
ki = ji belongs

to some allowable treatment φi−1,i (i = 2, . . . , l). The allowable treatments

φ1k, φ12, . . . , φl−1,l need not be pairwise distinct. Such a sequence of input

values,

λk1 = j1, λ
k2 = j2, . . . , λ

kl = jl

is called treatment-realizable. This choice ensures that(
Hk1
j1
, Hkl

jl

)
∼
(
Ak1φ1k , A

kl
φ1l

)
and (

H
ki−1

ji−1
, Hki

ji

)
∼
(
A
ki−1

φi−1,i
, Akiφi−1,i

)
, for i = 2, . . . , l.

But then

d
(
Hk1
j1
, Hkl

jl

)
= d

(
Ak1φ1k , A

kl
φ1l

)
and

d
(
H
ki−1

ji−1
, Hki

ji

)
= d

(
A
ki−1

φi−1,i
, Akiφi−1,i

)
, for i = 2, . . . , l,

whence the chain inequality can be rewritten using only observable pairwise

distributions,

d
(
Ak1φ1k , A

kl
φ1l

)
≤

l∑
i=2

d
(
A
ki−1

φi−1,i
, Akiφi−1,i

)
.

This inequality is a necessary condition for the existence of H. If it is found

violated for at least one treatment-realizable sequence of input values, then
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the existence of H is ruled out, and one should conclude that
(
A1, . . . , An

)
6"(

λ1, . . . , λn
)
.

There are numerous ways of constructing p.q.-metrics for jointly dis-

tributed random variables. We will confine our consideration to only two

examples.

If all random outputs have one and the same set of possible values S, then

one way of creating a p.q.-metric on a set X of such random variables is to

use any p.q.-metric D on S and put, for any random variables Q,R ∈ X,

d (Q,R) = E [D (Q,R)] .

The right-hand expression is the expected value of the random variable

D (Q,R). The underlying assumption is, of course, that this random variable

is well-defined (that is,D is a measurable function from S×S to non-negative

real numbers), and that its expectation is finite. It can easily be proved then

that d is a p.q.-metric on X.

As a simple example, consider the p.q.-metric

D (x, y) =

{
|x− y|p if x < y

0 otherwise

on the set of real numbers, with 0 ≤ p ≤ 1 (a power exponent). It is a

p.q.-metric because D (x, x) = 0, and

D (x, y) +D (y, z) ≥ D (x, z) ,

as one can prove by considering various arrangements of numbers x, y, z.

Using D one can construct a p.q.-metric for any set X of random variables

whose (common) set of possible values is a subset of reals. Let this set be a

subset of integers. Then the p.q.-metric on X derived from D is

dp (Q,R) =
∑
q<r

|q − r|p p (q, r) ,

where

p (q, r) = Pr (Q = q,R = r) .

Example 1.27 Let the outputs A1, A2 have the following distributions for
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treatments in Λ1 × Λ2 = {1, 2} × {1, 2}:

λ1 = 1, λ2 = 1 λ1 = 1, λ2 = 2
A2 = 0 A2 = 1 A2 = 2 A2 = 0 A2 = 1 A2 = 2

A1 = 0 .24 .07 0 A1 = 0 .24 .07 0
A1 = 2 .07 .24 .07 A1 = 2 .07 .24 .07
A1 = 4 0 .07 .24 A1 = 4 0 .07 .24

λ1 = 2, λ2 = 1 λ1 = 2, λ2 = 2
A2 = 0 A2 = 1 A2 = 2 A2 = 0 A2 = 1 A2 = 2

A1 = 0 .24 .07 0 A1 = 0 0 .07 .24
A1 = 2 .07 .24 .07 A1 = 2 .07 .24 .07
A1 = 4 0 .07 .24 A1 = 4 .24 .07 0

Let us put p = 1 and compute the values of the d1-p.q.-metric. For any

λ1, λ2 here,

d1(A1, A2) =
∑

a1<a2
|a1 − a2|1 p (a1, a2) = |1− 0|1 p (0, 1) + |2− 0|1 p (0, 2)

and

d1(A2, A1) =
∑
a2<a1

|a1 − a2|1 p (a1, a2)

= |2− 0|1 p (2, 0) + |4− 0|1 p (4, 0) + . . .+ |4− 2|1 p (4, 2) .

The calculations yield the following distances:

λ1 = 1, λ2 = 1 λ1 = 1, λ2 = 2 λ1 = 2, λ2 = 1 λ1 = 2, λ2 = 2
dp=1(A1, A2) .07 .07 .07 .55
dp=1(A2, A1) 1.07 1.07 1.07 1.55

Using this table, all possible distance test inequalities are of the form a ≤
b+ c+ d, where a, b, and d belong to one row and c to another, provided all

four values are in distinct columns. It is easy to see that all the inequalities

are passed. �

P.q.-metrics can be introduced directly in probabilistic terms rather de-

rived from “deterministic” metrics on sets of possible values. Consider, as

an example, the following construction. Let
(
S1,Σ1

)
, . . . , (Sm,Σm) be the

sets of possible values with sigma-algebras for random variables R1, . . . , Rm,

respectively, and let us partition each Sk into lk > 1 measurable sub-

sets S1k, . . . , Slkk ∈ Σk. It follows that the joint probabilities of any pair

Sik, Si
′k′ ,

Pr
(
Rk ∈ Sik, Rk′ ∈ Si′k′

)
,
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are well defined. It can easily be proved that the function

dclass

(
Rk, Rk

′
)

=
∑
i<i′

Pr
(
Rk ∈ Sik, Rk′ ∈ Si′k′

)
is a p.q.-metric. It is called a classification p.q.-metric, and it can be applied

to all types of random variables without restrictions.

Example 1.28 Consider the case with two real-valued random variables

R1, R2 and define the partition of S1 = R and S2 = R as, respectively,

S11 = (−∞, x), S21 = [x,∞)

and

S12 = (−∞, y), S22 = [y,∞).

Then, the classification distance is simply

dclass(R
1, R2) = Pr

(
R1 ∈ S11, R2 ∈ S22

)
= Pr

(
R1 < x,R2 ≥ y

)
.

Different choices of x, y give us different classification distances. �

Remark 1.12 A classification p.q.-metric can also be viewed as a limit

case of the metric dp introduced above, provided we first map by a mea-

surable function fk each Sk into a set {1, . . . , lk}, and then define all the

transformed random variables fk
(
Rk
)

as distributed on {1, . . . , l}, with

l = max (l1, . . . , lm). The latter is always possible by assigning to the “re-

dundant” integers probability zero. Following this transformation and equal-

ization of domains, dclass is obtained as dp=0. Another way of introducing

the classification metric is as a special case of an order-distance. Without

elaborating, the latter involves a relation of strict order ≺ between values of

one random variable and values of another. The order-distance is defined as

dord (Q,R) = Pr (Q ≺ R) .

Recall that a sequence λk1 = j1, λ
k2 = j2, . . . , λ

kl = jl of input values is

treatment-realizable if
{
λk1 = j1, λ

kk = jk
}

and
{
λki−1 = ji−1, λ

ki = ji
}

for

i = 2, . . . , l belong to allowable treatments. If the elements of all these pairs

are distinct, and if these pairs are the only subsequences of more than one

element that have the property of being a subset of an allowable treatment,

then the sequence is called irreducible. It turns out that one only has to

check the chain inequalities for irreducible sequences: these inequalities are

satisfied for all treatment-realizable sequences if and only if they are satisfied

for all irreducible ones.
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The set of irreducible sequences may be significantly smaller than the

set of all treatment-realizable sequences. Thus, it can be shown that if the

set Φ consists of all possible combinations of input values, then the only

irreducible sequences are quadruples of the form

λk = j1, λ
k′ = j2, λ

k = j3, λ
k′ = j4,

with k 6= k′, j1 6= j3 and j2 6= j4. The only inequalities to check then are of

the form,

d
(
Akφ14 , A

k′
φ14

)
≤ d

(
Akφ12 , A

k′
φ12

)
+ d

(
Ak
′
φ23 , A

k
φ23

)
+ d

(
Akφ34 , A

k′
φ34

)
,

where φ14, φ12, φ23, φ34 are any allowable treatments that contain, respec-

tively, {
λk = j1, λ

k′ = j4

}
,
{
λk = j1, λ

k′ = j2

}
,{

λk
′

= j2, λ
k = j3

}
,
{
λk = j3, λ

k′ = j4

}
.

1.16 (Non)Invariance of tests with respect to transformations

In this section we introduce another class of tests of selective influences,

called cosphericity tests. Prior to introducing them, however, we should dis-

cuss an important issue.

We know from Section 1.13 that if
(
A1, . . . , An

)
"
(
λ1, . . . , λn

)
, then(

B1, . . . , Bn
)
"
(
λ1, . . . , λn

)
, where the B’s are input-value-specific trans-

formations of the A′s, that is,

B1
φ = g1

(
λ1, A1

φ

)
, . . . , Bn

φ = gn
(
λn, Anφ

)
,

for all φ =
(
λ1, . . . , λn

)
∈ Φ. It follows that if a test provides a neces-

sary condition for selective influences, then its failure for any of the input-

value-specific transformations of
(
A1, . . . , An

)
φ

establishes
(
A1, . . . , An

)
6"(

λ1, . . . , λn
)
. If the outcome of a test is not invariant with respect to some

of such transformations, this consideration automatically expands this test

into a multitude of tests, one for each of these transformations. This may

enormously increase the ability of a test to detect violations of selective in-

fluences. This might sound paradoxical, or at least unexpected, but this is

generally true for any test that provides a necessary but not sufficient con-

dition for a tested proposition: the lack of invariance in the test’s outcome

with respect to transformations that preserve the tested proposition is an

advantage rather than a drawback.
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Remark 1.13 If a test provides a sufficient condition for
(
A1, . . . , An

)
"(

λ1, . . . , λn
)
, and it is not invariant with respect to input-value-specific

transformations, then one should apply it to a variety of
(
B1, . . . , Bn

)
φ

from

which
(
A1, . . . , An

)
φ

can be obtained by such a transformation. At the time

this is written (end of 2012), we do not have nontrivial tests that provide

sufficient but not necessary conditions. If a test is a criterion when applied

to input-output pairs of a particular type, then its (non)invariance with re-

spect to transformations is immaterial for establishing or rejecting selective

influences for original random variables (although transformed ones may be

of interest for their own sake).

Of the two distance tests considered in the previous section, dp-test is not

invariant (for any fixed p) with respect to numerical transformations of the

random outputs.

Example 1.29 Continuing Example 1.27, let us transform the outputs

A1, A2 as B1 = g1(A1), B2 = g2(A2), where g1 is given by 0 7→ 2, 2 7→ 1,

4 7→ 1 and g2 is given by 0 7→ 2, 1 7→ 1, 2 7→ 1. We get the joint distributions

λ1 = 1, λ2 = 1 B2 = 1 B2 = 2 λ1 = 1, λ2 = 2 B2 = 1 B2 = 2
B1 = 1 .62 .07 B1 = 1 .62 .07
B1 = 2 .07 .24 B1 = 2 .07 .24

λ1 = 2, λ2 = 1 B2 = 1 B2 = 2 λ1 = 2, λ2 = 2 B2 = 1 B2 = 2
B1 = 1 .62 .07 B1 = 1 .38 .31
B1 = 2 .07 .24 B1 = 2 .31 0

and the corresponding dp=1 distances are

λ1 = 1, λ2 = 1 λ1 = 1, λ2 = 2 λ1 = 2, λ2 = 1 λ1 = 2, λ2 = 2
dp=1(B1, B2) .07 .07 .07 .31
dp=1(B2, B1) .07 .07 .07 .31

Now the distance test inequality .31 ≤ .07 + .07 + .07 = .21 fails implying(
B1, B2

)
6"
(
λ1, λ2

)
which in turn implies

(
A1, A2

)
6"
(
λ1, λ2

)
. Thus, the

dp-test is not invariant with respect to transformations of the variables. �

The second distance test considered in the previous section, dclass-test, is

invariant (for any given partition scheme) with respect to any transforma-

tions of the possible values of random outputs. The obvious proviso for this

statement is that a transformed value is always classified into a partition

with the same number as the original value. If this proviso is violated, it

would amount to changing the partition scheme for the original outputs.

The power of the dclass-test to detect violations of selective influences does

not come from different transformations. Rather it comes from complete
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flexibility in the partitioning scheme. Another way of looking at this test

(see Remark 1.12) is that a transformation of the random outputs (different

mappings into natural numbers) is built into the identity of the test. If the

transformation changes, we apply a different test.

Example 1.30 Consider the system (A1, A2) of Example 1.27. Let us par-

tition S1 into S11 = {0}, S21 = {2, 4}, and S2 into S12 = {0, 1}, S22 = {2}.
We obtain the following joint probabilities for the partition memberships

Ak ∈ Sik:

λ1 = 1, λ2 = 1 A2 ∈ S21 A2 ∈ S22 λ1 = 1, λ2 = 2 A2 ∈ S21 A2 ∈ S22

A1 ∈ S11 .31 0 A1 ∈ S11 .31 0
A1 ∈ S12 .38 .31 A1 ∈ S12 .38 .31

λ1 = 2, λ2 = 1 A2 ∈ S21 A2 ∈ S22 λ1 = 2, λ2 = 2 A2 ∈ S21 A2 ∈ S22

A1 ∈ S11 .31 0 A1 ∈ S11 .07 .24
A1 ∈ S12 .38 .31 A1 ∈ S12 .62 .07

This yields the classification distances

λ1 = 1, λ2 = 1 λ1 = 1, λ2 = 2 λ1 = 2, λ2 = 1 λ1 = 2, λ2 = 2
dclass(A

1, A2) 0 0 0 .24
dclass(A

2, A1) .38 .38 .38 .62

which can be seen to satisfy all distance test inequalities, as in Example 1.27.

Consider now the partitioning of S1 into S11 = {0, 2}, S21 = {4}, and of

S2 into S12 = {0, 1}, S22 = {2}. The partition membership indicator Bk

(given by Bk = i when Ak ∈ Sik) corresponds to the transformed variables

Bk of Example 1.29. As a result, we get the same joint distribution tables as

there. We know that dclass corresponds to dp=0 (see Remark 1.12), and it is

easy to see that dp=0 is identical to dp=1 when the sets are partitioned into

only two classes each. Therefore dclass distance table we obtain is identical

to the dp=1 table shown in Example 1.29, and we conclude that the dclass-

distance test fails, implying
(
A1, A2

)
6"
(
λ1, λ2

)
. �

We conclude this section by presenting a test based on pairwise correlation

between random outputs. It is called the cosphericity test, and confined

to random variables for which conventional correlations can be computed.

These are all variables that are defined (or can be redefined) on the set of

real numbers with the Lebesgue sigma-algebra. Discrete random variables

can always be redefined to fall within this category.

The primary application of the cosphericity test is to two input-output

pairs, with two values per input, and all four treatments allowable. That is,

we test the assumption
(
A1, A2

)
"
(
λ1, λ2

)
, with Λ1 = {1, 2}, Λ2 = {1, 2},
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and allowable treatments φ11 =
(
λ1

1, λ
2
1

)
, φ12 =

(
λ1

1, λ
2
2

)
, etc. The use of the

test for larger designs will be discussed later.

Denote the correlation between A1
φij

and A2
φij

(as the two are jointly

distributed) by ρij , i, j ∈ {1, 2}. The cosphericity test is the proposition: if(
A1, A2

)
"
(
λ1, λ2

)
, then

|ρ11ρ12 − ρ21ρ22| ≤
√

1− (ρ11)2
√

1− (ρ12)2 +

√
1− (ρ21)2

√
1− (ρ22)2.

Superscript 2 here indicates squaring. If this inequality is violated, then the

initial assumption
(
A1, A2

)
"
(
λ1, λ2

)
should be rejected.

The explanation for the name “cosphericity” is this: the inequality above

holds if and only if one can place four points, A1,A2,B1,B2, on the surface

of a unit sphere (in the Euclidean three-dimensional space) centered at point

O, so that

cos∠A1OB1 = ρ11, cos∠A1OB2 = ρ12,

cos∠A2OB1 = ρ21, cos∠A2OB2 = ρ22.

Example 1.31 Consider the following output distributions of A1, A2 for
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the treatments in Λ1 × Λ2 = {1, 2} × {1, 2}:

λ1 = 1, λ2 = 1 λ1 = 1, λ2 = 2
A2 = 0 A2 = 1 A2 = 5 A2 = 0 A2 = 1 A2 = 5

A1 = 0 .24 .07 0 A1 = 0 .24 .07 0
A1 = 1 .07 .24 .07 A1 = 1 .07 .24 .07
A1 = 5 0 .07 .24 A1 = 5 0 .07 .24

λ1 = 2, λ2 = 1 λ1 = 2, λ2 = 2
A2 = 0 A2 = 1 A2 = 5 A2 = 0 A2 = 1 A2 = 5

A1 = 0 .24 .07 0 A1 = 0 0 .07 .24
A1 = 1 .07 .24 .07 A1 = 1 .07 .24 .07
A1 = 5 0 .07 .24 A1 = 5 .24 .07 0

The correlations coefficients of the four distributions are ρ11 = ρ12 = ρ21 ≈
.7299 and ρ22 ≈ −.6322. Substituting these in the cosphericity test, we

obtain

.9942 ≈ |.7299 · .7299− .7299(−.6322)|

≤
√

1− .72992
√

1− .72992 +
√

1− .72992
√

1− .63222 ≈ .9969,

so the test is passed. �

Correlation between two random variables is not invariant with respect to

any but affine transformations of the random variables. This allows one to ex-

pand the single cosphericity test into a potential infinity of tests, correspond-

ing to different nonlinear input-value-specific transformations g1

(
λ1, A1

φ

)
and g2

(
λ2, A2

φ

)
. An interesting fact is that if, by means of some reversible

transformations g1, g2 the random variables
(
A1, A2

)
φ can be made bivariate-

normally distributed at all four treatments, then the cosphericity test per-

formed on thus transformed random outputs provides both a necessary and

sufficient condition for
(
A1, A2

)
"
(
λ1, λ2

)
.

Example 1.32 The system of Example 1.31 passed the coshpericity test.

However, if we apply the nonlinear transformation B1 = g(A1), B2 = g(A2),
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where g is given by 0 7→ 0, 1 7→ 1, 5 7→ 2, we get

λ1 = 1, λ2 = 1 λ1 = 1, λ2 = 2
B2 = 0 B2 = 1 B2 = 2 B2 = 0 B2 = 1 B2 = 2

B1 = 0 .24 .07 0 B1 = 0 .24 .07 0
B1 = 1 .07 .24 .07 B1 = 1 .07 .24 .07
B2 = 2 0 .07 .24 B2 = 2 0 .07 .24

λ1 = 2, λ2 = 1 λ1 = 2, λ2 = 2
B2 = 0 B2 = 1 B2 = 2 B2 = 0 B2 = 1 B2 = 2

B1 = 0 .24 .07 0 B1 = 0 0 .07 .24
B1 = 1 .07 .24 .07 B1 = 1 .07 .24 .07
B2 = 2 0 .07 .24 B2 = 2 .24 .07 0

and the correlations for these joint distributions are ρ11 = ρ12 = ρ21 ≈ .7742

and ρ22 ≈ −.7742. Substituting these in the cosphericity test, we obtain

1.1988 ≈ |.7742 · .7742− .7742(−.7742)|

≤
√

1− .77422
√

1− .77422 +
√

1− .77422
√

1− .77422 ≈ .8012.

We see that the cosphericity test is not passed for the transformed variables.

As a result selective influences are ruled out for the original variables as well.

�

The cosphericity test can also be applied to more than two input-output

pairs. If we assume that
(
A1, . . . , An

)
"
(
λ1, . . . , λn

)
, then, by the nest-

edness property for input-output pairs, for any two of them,
(
Ak, λk

)
and(

Ak
′
, λk

′
)

, we should have
(
Ak, Ak

′
)
"
(
λk, λk

′
)

. The test only applies if

there are two values i and i′ of λk and two values j and j′ of λk
′

such that,

for some allowable treatments φij , φij′ , φi′j , φi′j′ ,

λk = i, λk
′

= j ∈ φij , λk = i, λk
′

= j′ ∈ φij′ , etc.

In other words, the inputs and their values should be chosen so that
{
λk = i, λk = i′

}
and

{
λk
′

= j, λk
′

= j′
}

form a completely crossed subdesign within the set

of allowable treatments. By the nestedness property for input values, we

have
(
Ak, Ak

′
)
"
(
λk, λk

′
)

with the input values restricted to {i, i′} and

{j, j′} and the new set of allowable treatments consisting of all four possi-

ble combinations. If this cosphericity inequality is violated for all least one

combination of k, k′, i, i′, j, j′, then the initial assumption
(
A1, . . . , An

)
"(

λ1, . . . , λn
)

should be rejected.
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1.17 Conditional determinism and conditional independence of

outcomes

The definition of selective influences (in the canonical form) requires the

existence of a random variable R and functions f1, . . . , fn such that, for all

allowable treatments φ,(
A1
φ, . . . , A

n
φ

)
∼
(
f1

(
λ1, R

)
, . . . , fn (λn, R)

)
.

One obvious consequence of this definition is that, conditioned on any value

r of R, the outputs become (equal to) deterministic functions of the corre-

sponding factors,

f1

(
λ1, r

)
, . . . , fn (λn, r) .

It is sometimes easy to deal with these deterministic quantities, derive cer-

tain inequalities that hold for every value of r, and then show that they are

preserved as R randomly varies. It is an especially useful approach if the

distributions of
(
A1
φ, . . . , A

n
φ

)
at allowable treatments φ are not known, and

instead we know distributions of certain functions of these random variables,

such as their sums or maxima.

Let us discuss this on an example from studies of mental architectures.

This is a traditional area of psychology dealing with decomposing perfor-

mance of a task into a network of subprocesses when we only know the

distributions of the overall performance time (referred to as response time)

at different treatments. Let us assume that we observe response times T

in an experiment with two factors, λ1, λ2, manipulated at two levels each,

denoted in both cases by 1 and 2. All four treatments are allowable. Let

us postulate that there are two processes involved, with their durations A1

and A2 being random variables, and that
(
A1, A2

)
"
(
λ1, λ2

)
. We want

to determine which of the three “architectures,” or composition schemes, is

being employed:

1. serial, Tφ = A1
φ +A2

φ

2. parallel-OR, Tφ = min
(
A1
φ, A

2
φ

)
, or

3. parallel-AND, Tφ = max
(
A1
φ, A

2
φ

)
.

One tool traditionally used for this purpose is the interaction contrast,

c (t) = Pr (T11 ≤ t) + Pr (T22 ≤ t)− Pr (T12 ≤ t)− Pr (T21 ≤ t) ,

where t is any non-negative number, and Tij abbreviates Tφ=(i,j).
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We do not know the joint distribution of A1
φ, A

2
φ at any of the four treat-

ments, but we can write(
A1
ij , A

2
ij

)
∼
(
f1

(
λ1 = i, R

)
, f2

(
λ2 = j, R

))
=
(
g1
i (R) , g2

j (R)
)
, i, j ∈ {1, 2} .

We need one additional assumption: that R can be chosen in such a way

that, for any of its possible values r,

g1
1 (r) ≤ g1

2 (r) , g2
1 (r) ≤ g2

2 (r) .

In other words, switching either factor from level 1 to level 2 prolongs the

corresponding processing time. We call this assumption prolongation con-

straints. Various analogues of this assumption are common in studies of

mental architectures.

Deterministic real-valued quantities can be viewed as random variables

with Heaviside distribution functions:

Pr
(
gkl (r) ≤ t

)
=

{
0 if t < gkl (r) ,

1 if t ≥ gkl (r) .

Analogously,

Pr
(
comp

(
g1
i (r) , g2

j (r)
)
≤ t
)

=

 0 if t < comp
(
g1
i (r) , g2

j (r)
)
,

1 if t ≥ comp
(
g1
i (r) , g2

j (r)
)
,

where comp stands for one of the three composition rules of interest, plus,

maximum, or minimum. This allows us to form the conditional interaction

contrast,

c∗ (t, r) = Pr (t11 (r) ≤ t)+Pr (t22 (r) ≤ t)−Pr (t12 (r) ≤ t)−Pr (t21 (r) ≤ t) ,

where

tij = comp
(
g1
i (r) , g2

j (r)
)
.

It is easy to see that

Pr (Tij ≤ t) =

∫
SR

Pr (tij (r) ≤ t) dpR (r)

and

c (t) =

∫
SR

c∗ (t, r) dpR (r) ,

where the Lebesgue integral is taken over the entire domain SR of R, and pR
is the probability measure in the distribution of R. (The reader not familiar

with Lebesgue integrals can think of dpR (r) above as a generalized version of

fR (r) dr, where fR is the density function of R over the set of real numbers.)
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Using this observation we can easily establish that if the composition rule

is min (parallel-OR architecture), then c (t) ≤ 0, for all t, because c∗ (t, r) ≤
0 at any t and any fixed r. Indeed, consider all possible arrangements of

g1
1 (r) , g1

2 (r) , g2
1 (r) , g2

2 (r) keeping in mind the prolongation constraints and

assuming, with no loss of generality, that g1
1 (r) ≤ g2

1 (r). These possible

arrangements are

(i) g1
1 (r) ≤ g1

2 (r) ≤ g2
1 (r) ≤ g2

2 (r) ,

(ii) g1
1 (r) ≤ g2

1 (r) ≤ g1
2 (r) ≤ g2

2 (r) ,

(iii) g1
1 (r) ≤ g2

1 (r) ≤ g2
2 (r) ≤ g1

2 (r) .

Thus, for (ii), we have

t11 (r) = min
(
g1

1 (r) , g2
1 (r)

)
= g1

1 (r) ,

t12 (r) = min
(
g1

1 (r) , g2
2 (r)

)
= g1

1 (r) ,

t21 (r) = min
(
g1

2 (r) , g2
1 (r)

)
= g2

1 (r) ,

t22 (r) = min
(
g1

2 (r) , g2
2 (r)

)
= g1

2 (r) .

Then, substituting for the numerical values

c∗ (t, r) = Pr (t11 (r) ≤ t) + Pr (t22 (r) ≤ t)− Pr (t12 (r) ≤ t)− Pr (t21 (r) ≤ t)

=



0 + 0− 0− 0 = 0 if t < g1
1 (r) ,

1 + 0− 1− 0 = 0 if g1
1 (r) ≤ t < g2

1 (r) ,

1 + 0− 1− 1 < 0 if g2
1 (r) ≤ t < g1

2 (r) ,

1 + 1− 1− 1 = 0 if g1
2 (r) ≤ t < g2

2 (r) ,

1 + 1− 1− 1 = 0 if t ≥ g2
2 (r) .

In the same way one proves that c∗ (t, r) is never positive in cases (i) and

(iii).

By analogous reasoning we can show that if the composition rule is max

(parallel-AND architecture), then c (t) ≥ 0, for all t, because c∗ (t, r) ≥ 0 at

any t and any fixed r.

For the serial architecture (the composition rule +) c∗ (t, r) does not pre-

serve its sign, but the analysis of the arrangements shows that, for any t and

r, ∫ t

0
c∗ (t, r) dt ≥ 0

and ∫ ∞
0

c∗ (t, r) dt = 0.
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Then the same properties should hold for c (t), because∫ t

0
c (t) dt =

∫ t

0

(∫
SR

c∗ (t, r) dpR (r)

)
dt =

∫
SR

(∫ t

0
c∗ (t, r) dt

)
dpR (r) .

However, dealing with deterministic quantities is not always convenient.

If a deterministic quantity changes as a function of r, the probability with

which it falls within a given measurable subset may jump from 0 to 1 or

vice versa. In some cases it may be desirable to deal with “well-behaved”

distributions only, with associated probabilities that change continuously or

even sufficiently smoothly. (The term “smooth” refers to the highest order

of continuous derivative a function possesses.) To make this desideratum

achievable in the context of selective influences, we begin by stating the

following equivalence.

Theorem 1.9
(
A1, . . . , An

)
"
(
λ1, . . . , λn

)
if and only if one can find

stochastically independent random variables R,R1, . . . , Rn and functions w1, . . . , wn,

such that (
A1
φ, . . . , A

n
φ

)
∼
(
w1

(
λ1, R,R1

)
, . . . , wn (λn, R,Rn)

)
for all allowable treatments φ =

(
λ1, . . . , λn

)
.

By analogy with factor analysis, we can call R1, . . . , Rn specific sources

of variability, and call R a common source of variability. The proof of the

theorem is very simple. If a representation(
A1
φ, . . . , A

n
φ

)
∼
(
f1

(
λ1, R

)
, . . . , fn (λn, R)

)
exists, one can choose arbitrary R1, . . . , Rn (combined together and with R

by an independent coupling) and put wk (λ, r, r′) = fk (λ, r), k = 1, . . . , n. If

a representation stated in the theorem exists, then defineR∗ =
(
R,R1, . . . , Rn

)
and put fk

(
λ,
(
r, r1, . . . , rn

))
= wk

(
λ, r,Projk

(
r1, . . . , rn

))
.

The consequences of this simple theorem are significant. Once the possibil-

ity of splitting a single source of randomness into a common and specific com-

ponents has been established, it becomes possible that in certain situations

this split can be more than a formal redefinition of a single source. It follows

from the theorem that conditioned upon any value r of R, the random vari-

ables w1

(
λ1, r, R1

)
, . . . , wn (λn, r, Rn) are stochastically independent. One

can hypothesize now, that these independent random variables have dis-

tributions with desired properties. For example, if all random variables(
A1
φ, . . . , A

n
φ

)
are real-valued and continuous, w1

(
λ1, r, R1

)
, . . . , wn (λn, r, Rn)
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may be assumed to possess densities, or have the property that the proba-

bility with which wk
(
λk, r, Rk

)
falls within any interval of reals is a contin-

uously differentiable function of r. Such assumptions may be important in

studying mental architectures or random variables underlying comparisons

of stimuli.

1.18 Related literature

There are many textbooks treating measure theory and probability (e.g.,

Chung, 1974). However, the reader should be aware that (a) older textbooks

usually deal with random variables in the narrow sense only; (2) in most

textbooks random variables are defined as measurable functions on a sample

space, restricting thereby the consideration to jointly distributed random

variables. For random variables that need not be jointly distributed and

the associated theory of coupling them into jointly distributed entities, see

Thorisson (2000). The earliest explicit discussions of selective influences in

psychology can be found in Sternberg (1969) and Townsend (1984). Marginal

selectivity for two random variables was first mentioned in Townsend and

Schweickert (1989). Other historical details and relations can be found in

Dzhafarov (2003a), where the theory of selective influences presented in

this chapter was first proposed. In this earlier work (and its elaboration

in Dzhafarov and Gluhovsky (2006) the “is distributed as” relation in the

defining representation for selective influences,(
A1
φ, . . . , A

n
φ

)
∼
(
f1

(
λ1, R

)
, . . . , fn (λn, R)

)
was somewhat carelessly replaced with equality. For a mathematically rigor-

ous and maximally general version of the definition and Joint Distribution

Criterion, see Dzhafarov and Kujala (2010). The tests of selective influences

were first introduced in Kujala and Dzhafarov (2008). They included the

cosphericity tests and a special form of distance tests. A general version

of distance tests (p.q.-metric tests) was introduced in Dzhafarov and Ku-

jala (2013). The linear feasibility test is described in Dzhafarov and Kujala

(2012b). For applications of the theory of selective influences to discrim-

ination judgments and to mental processing architectures, see Dzhafarov

(2003b,c) and Dzhafarov et al. (2004). The parallels between the theory of

selective influences and the analysis of determinism in the so-called Bohmian

version of the Einsten-Podolsky-Rosen entanglement paradigm of quantum

physics are described in Dzhafarov and Kujala (2012b,a). The history there

dates back to Bell’s (1964) epoch-making inequalities, and then to their elb-

orations in Clauser et al. (1969) and Fine (1982). Mathematically, this line
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of work is subsumed by the linear feasibility test, whose most general version

in quantum physics is described in Basoalto and Percival (2003).
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