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Abstract
From behavioral sciences to biology to quantum mechanics, one encounters situations where (i) a system
outputs several random variables in response to several inputs, (ii) for each of these responses only some
of the inputs may “directly” influence them, but (iii) other inputs provide a “context” for this response by
influencing its probabilistic relations to other responses. These contextual influences are very different,
say, in classical kinetic theory and in the entanglement paradigm of quantum mechanics, which are
traditionally interpreted as representing different forms of physical determinism. One can mathematically
construct systems with other types of contextuality, whether or not empirically realizable: those that form
special cases of the classical type, those that fall between the classical and quantum ones, and those that
violate the quantum type. We show how one can quantify and classify all logically possible contextual
influences by studying various sets of probabilistic couplings, i.e., sets of joint distributions imposed on
random outputs recorded at different (mutually incompatible) values of inputs.

Introduction
Consider a system with two inputs, ↵,�, and two random outputs, A,B, about which it is assumed that
A is not influenced by �, nor B by ↵. A necessary condition for this selectivity of influences is marginal
selectivity [1]: changes in the values of � do not influence the distribution of A, and analogously for
↵ and B. Let, for example, both inputs and outputs be binary: ↵ = {↵

1

,↵
2

}, � ={�
1

,�
2

}, and A,B
attain values +1 and �1 each. Denoting by A

ij

and B
ij

the two outputs conditioned on ↵ = ↵
i

,� = �
j

(i, j 2 {1, 2}), the distribution of (A
ij

, B
ij

) is described by the joint probabilities p
ij

, q
ij

, r
ij

, s
ij

(summing
to 1) in the matrix

↵
i

,�
j

B
ij

= +1 B
ij

= �1
A

ij

= +1 p
ij

q
ij

A
ij

= �1 r
ij

s
ij

. (1)

Assuming all four combinations {↵
1

,↵
2

} ⇥ {�
1

,�
2

} are possible, marginal selectivity in this example
means

p
i1

+ q
i1

= p
i2

+ q
i2

= Pr [A
ij

= +1] ,
p
1j

+ r
1j

= p
2j

+ r
2j

= Pr [B
ij

= +1] ,
(2)
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for all i, j 2 {1, 2}.
The assumption of selective influences, however, is stronger. It requires that the joint distribution of

the two outputs satisfies, for all i, j 2 {1, 2},

(A
ij

, B
ij

) ⇠ (f (R,↵
i

) , g (R,�
j

)) (3)

where ⇠ stands for “has the same distribution as,” f, g are some functions, and R is a source of randomness
that does not depend on ↵,� [2-8]. In our example (1) this means

p
ij

= Pr [f (R,↵
i

) = +1, g (R,�
j

) = +1] ,
r
ij

= Pr [f (R,↵
i

) = +1, g (R,�
j

) = �1] ,
etc.

(4)

In the quantum mechanical context (see below) R is interpreted as “hidden variables.” Such a represen-
tation may or may not exist when marginal selectivity is satisfied. For instance, the latter is satisfied in
the following four distributions,

↵
1

,�
1

B
11

= +1 B
11

= �1
A

11

= +1

1/4 0

A
11

= �1 0

3/4

↵
1

,�
2

B
12

= +1 B
12

= �1
A

12

= +1 0

1/4
A

12

= �1 1/2 1/4

↵
2

,�
1

B
21

= +1 B
21

= �1
A

21

= +1 0

1/2
A

21

= �1 1/4 1/4

↵
2

,�
2

B
22

= +1 B
22

= �1
A

22

= +1 0

1/2
A

22

= �1 1/2 0

(5)

It can be shown, however, that no representation (3) here is possible as the joint probabilities violate
the Bell/CHSH inequalities considered below (Section 1 of Theory and Text S1). At the same time, a
representation in the form of (3) is possible for the similar distributions

↵
1

,�
1

B
11

= +1 B
11

= �1
A

11

= +1

1/4 0

A
11

= �1 0

3/4

↵
1

,�
2

B
12

= +1 B
12

= �1
A

12

= +1

1/4 0

A
12

= �1 1/4 1/2

↵
2

,�
1

B
21

= +1 B
21

= �1
A

21

= +1 0

1/2
A

21

= �1 1/4 1/4

↵
2

,�
2

B
22

= +1 B
22

= �1
A

22

= +1 0

1/2
A

22

= �1 1/2 0

(6)
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Figure 1. Entanglement paradigm. Schematic representation of two spin-1/2 particles, e.g.,
electrons, in the singlet state (represented by h"|⌦ h#|� |#i ⌦ |"i in quantum-mechanical notation)
running away from each other. The directions ↵ and � are detector settings for spin measurements (in
our language, inputs). The measured spins A and B (outputs) in these directions are shown by rotation
arrows: one direction of rotation (say, clockwise) represents “spin-up”= +1 in one particle and
“spin-down”= �1 in the other. By the quantum theory, for any ↵,�, Pr [A = +1, B = +1] =

1/2 cos2 ✓/2
(equivalently, expected value of AB is cos ✓). The two measurements are made simultaneously (in some
inertial frame of reference).

One can think of ↵ and � in (5) and (6) as being involved in different kinds of probabilistic context for
the “direct” dependence of, respectively, B on � and A on ↵.

We propose a principled way of quantifying and classifying conceivable contextual influences, whether
within or outside the scope of (3). Our approach is neutral with respect to such issues as causality or
what distinguishes direct influences from contextual. We merely accept as a given a diagram of direct
input-output correspondences (e.g., A ↵, B  �) and study the joint distribution of the outputs at all
possible values of the inputs. The interpretation of the diagram is irrelevant insofar as it is compatible
with the observed pattern of marginal selectivity: as ↵ changes while � remains fixed, the distribution of
B does not change, and as � changes while ↵ remains fixed, the distribution of A does not change. Note
that the distribution of A may but does not have to change in response to changes in ↵, and analogously
for B and �.

Our approach is maximally general in the sense of applying to arbitrary sets of inputs and outputs
(see Section 5 of Theory). To demonstrate it by detailed computations, however, we focus primarily on
binary ↵,� influencing binary A,B; and even more narrowly, on the “homogeneous” case with the two
values of both A and B equiprobable at all values of the inputs ↵

i

,�
j

(i, j 2 {1, 2}),

Pr [A
ij

= +1] = Pr [B
ij

= +1] =

1/2. (7)

Marginal selectivity then is satisfied trivially (because all marginal distributions are fixed).
The example focal for this paper is Bohm’s version of the Einstein-Podolsky-Rosen paradigm (EPR/B)

[9]: a quantum mechanical system consisting (in the simplest case) of two entangled spin-1/2 particles
separated by a space-like interval (see Fig. 1). The two inputs here are spin measurements on these
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particles: input ↵ has two values corresponding to spin axes ↵
1

,↵
2

chosen for one particle, and input �
has two values corresponding to spin axes �

1

,�
2

for another particle. The two outputs are spin values
recorded: having chosen axes ↵

i

and �
j

, i, j 2 {1, 2}, one records A
ij

for the first particle and B
ij

for the second, each being a random variable with values +1 and �1. (Note that the spins of a given
particle along two different axes are noncommuting (see Text S2), because of which if one spin value is
determined precisely, +1 or -1, the other one has a nonzero uncertainty. This means that ↵

1

,↵
2

considered
as measurements yielding precise values of spins are mutually exclusive, and this is the reason ↵

1

,↵
2

can
be viewed as values of a single input ↵; and analogously for �

1

,�
2

[10,11].) Marginal selectivity (2) in
this context is known under a variety of other names, such as “parameter independence” and “physical
locality” [12]. We confine ourselves to the case (7), with the two spin values +1 and -1 being equiprobable
for both A

ij

and B
ij

.
Formally equivalent situations are abundant in behavioral and social sciences [8,13-17], where the

issue of selective influences was initially introduced in [18,19], in the context of information processing
architectures. An example of a system here (from our laboratory) can be a human observer who adjusts
a visual stimulus until it matches in appearance another, “target” visual stimulus. Let the latter be
characterized by two properties, ↵ and � (e.g., amplitudes of two Fourier-components), each varying
on two levels, ↵

1

,↵
2

and �
1

,�
2

. Denoting by S1

ij

and S2

ij

the corresponding properties (amplitudes) of
the adjusted stimulus in response to ↵

i

,�
j

, we define a binary random output A
ij

as having the value
“high”= +1 or “low”= �1 according as the variable S1

ij

is above or below the median of its distribution;
output B

ij

is defined from S2

ij

analogously. Marginal selectivity in the form (7) is ensured here by
construction.

In an example from a biological domain S1

ij

and S2

ij

could be activity levels of two neurons tuned to
two stimulus properties, ↵ and �, respectively. Making ↵ and � vary on two levels each and defining
A

ij

, B
ij

with respect to the medians of S1

ij

, S2

ij

by the same rule as above, we get precisely the same
mathematical formulation.

The formal equivalence of these three examples should by no means be interpreted as a hint at their
physical affinity. Unlike in the EPR/Bohm paradigm, no physical laws prohibit the activity level A of a
neuron tuned to stimulus property ↵ from being affected by stimulus property �. Similarly, the amplitude
A of the first Fourier component of the adjusted stimulus in the second example may very well be affected
by the amplitude � of the second Fourier component of the target stimulus. Our only claim is that if these
“secondary” influences do not change the marginal distributions of A and B (which in the two examples
in question is ensured by the definition of A and B), they can be viewed within the framework of a formal
treatment that also includes the (physically very different) case of entangled particles.

Theory

1 Forms of context (determinism)
In the following, symbols i, j, k (possibly with primes) always take on values 1, 2 each, and each of the
outputs A

ij

, B
ij

takes on values +1,�1 with equal probabilities. Representation (3) is equivalent to the
existence of a jointly distributed system

H =

�
H1

1

, H1

2

, H2

1

, H2

2

�
, (8)

such that every output pair A
ij

, B
ij

is distributed as H1

i

, H2

j

; in symbols,
�
H1

i

, H2

j

�
⇠ (A

ij

, B
ij

) . (9)

As this entails
H1

i

⇠ A
ij

, H2

j

⇠ B
ij

,
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all components of H are random variables with equiprobable +1/-1, and (9) reduces to

Pr [A
ij

= +1, B
ij

= +1]

= Pr

⇥
H1

i

= +1, H2

j

= +1

⇤
.

(10)

The existence of H in (8) satisfying (9) is known as (a special case of) the Joint Distribution Criterion
(JDC) [6,7,14,20,21]. It follows from (3) by

H1

i

= f (R,↵
i

) , H2

j

= g (R,�
j

) . (11)

Conversely, if (9) holds for some H, then one can put R = H and

f (H,↵
i

) = Proj

i

�
H1

1

, H1

2

, H2

1

, H2

2

�
,

g (H,�
j

) = Proj

2+j

�
H1

1

, H1

2

, H2

1

, H2

2

�
,

(12)

where Proj

k

stands for the “kth member” (in the list of arguments). The JDC is a deep criterion that
provides a probabilistic foundation for our understanding of the classical (non)contextuality (or classical
determinism in physics). In particular, it immediately follows from the JDC that if representation (3)
for (A

ij

, B
ij

) exists, the “hidden variables” R can always be reduced to a single discrete random variable
with 2

4 possible values (corresponding to the possible values of H).
Using the same notation as above,

p
ij

= Pr [A
ij

= +1, B
ij

= +1] , (13)

the JDC in our case (two binary inputs and two binary outputs with equiprobable values) is equivalent
to four double-inequalities

0  p
ij

+ p
ij

0
+ p

i

0
j

0 � p
i

0
j

 1 (14)

with i 6= i0, j 6= j0 [6,7]. (See Text S1 for a derivation.) They are often referred to as the Bell/CHSH
inequalities (in the homogeneous form), CHSH acronymizing the authors of [4], although the first ap-
pearance of these inequalities dates to [5].

The theory of the EPR/B paradigm predicts and experimental data confirm violations of the Bell/CHSH
inequalities [22,23], but quantum mechanics imposes its own constraint on the same linear combinations
of probabilities :

1�
p
2

2

 p
ij

+ p
ij

0
+ p

i

0
j

0 � p
i

0
j

 1 +

p
2

2

. (15)

This constraint is known as the Cirel’son inequalities [24, 25] (see Text S2 for a derivation). Since the
class of vectors (p

11

, p
12

, p
21

, p
22

) that satisfy these double-inequalities include those allowed by (14) as a
proper subset, it is natural to expect that (15) represents some relaxation, or generalization of the JDC.
No such generalization, however, has been previously proposed. Developing one is the main goal of this
paper.

This generalization is not confined to quantum mechanical systems. In other (e.g., behavioral) appli-
cations, one cannot exclude a priori the possibility of the bounds m and M in

m  p
ij

+ p
ij

0
+ p

i

0
j

0 � p
i

0
j

M (16)

being wider than in (15), or falling between the bounds in (14) and (15), or being more narrow than in
(14). One can think of all kinds of other constraints imposed on the possible values of (p

11

, p
12

, p
21

, p
22

),
from confining this vector to one specific value to allowing it to vary freely. The latter (“complete chaos”)
is represented by the “no-constraint” constraint

� 1/2  p
ij

+ p
ij

0
+ p

i

0
j

0 � p
i

0
j

 3/2 (17)
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with m = �1/2 attained if one of p
11

, p
12

, p
21

, p
22

is 1/2 and the rest are zero, and M =

3/2 attained if
three of p

11

, p
12

, p
21

, p
22

are 1/2 and the remaining one is zero. Recall that we only consider the outputs
with equiprobable outcomes, so

0  p
ij

 1/2. (18)

All these conceivable constraints on the possible values of (p
11

, p
12

, p
21

, p
22

) represent different forms
and degrees of contextual influences. It would be unsatisfactory if all these possibilities, whether or not
empirically realizable, could not be treated within a unified probabilistic framework including JDC as a
special case. We construct such a framework, based on the classical (Kolmogorov’s) theory of probability
and the probabilistic coupling theory [26].

2 Connections
It is easy to see that for any vector of probabilities p = (p

11

, p
12

, p
21

, p
22

) one can find a jointly distributed
system of +1/-1 variables

H =

�
H1

11

, H2

11

, H1

12

, H2

12

, H1

21

, H2

21

, H1

22

, H2

22

�
(19)

such that 2

4

�
H1

ij

, H2

ij

�
⇠ (A

ij

, B
ij

)

i.e.
Pr

⇥
H1

ij

= +1, H2

ij

= +1

⇤
= p

ij

3

5 (20)

for all i, j. The JDC then amounts to additionally assuming that among all such vectors H there is one
with

Pr

⇥
H1

i1

6= H1

i2

⇤
= 0,

Pr

⇥
H2

1j

6= H2

2j

⇤
= 0,

(21)

and this is the assumption that is rejected by quantum theory in the EPR/B paradigm. Once (21) is
explicitly formulated, however, it becomes clear that it is not the only way of thinking of H. Since A

i1

and A
i2

occur under mutually exclusive conditions, one cannot identify the distribution of
�
H1

i1

, H1

i2

�

with that of (A
i1

, A
i2

). The latter does not exist as a pair of jointly distributed random variables.
There is therefore no privileged pairing scheme for realizations of H1

i1

and H1

i2

,and zero values for
Pr

⇥
H1

i1

6= H1

i2

⇤
,Pr

⇥
H2

1j

6= H2

2j

⇤
are as acceptable a priori as any other. Analogous considerations ap-

ply to
�
H2

1j

, H2

2j

�
and (B

1j

, B
2j

).
Our approach consists in replacing (21) with more general

Pr

⇥
H1

i1

6= H1

i2

⇤
= 2"1

i

2 [0, 1] ,
Pr

⇥
H2

1j

6= H2

2j

⇤
= 2"2

j

2 [0, 1] ,
(22)

and characterizing the dependence of (A,B) on (↵,�) by properties of the set of all 4-vectors " =�
"1
1

, "1
2

, "2
1

, "2
2

�
that are compatible with or imply certain constraints imposed on the vectors p = (p

11

, p
12

, p
21

, p
22

).
Having adopted a particular diagram of input-output correspondences (in our case, A ↵, B  �), we
can also say that these sets of " characterize the contextual role of ↵,� for B and A, respectively.

We call " a vector of connection probabilities. The connection probabilities are of a principally non-
empirical nature: they are joint probabilities of events that can never co-occur. By contrast, due to
(20) the components of p are joint probabilities of events that do co-occur, and by observing these co-
occurrences the probabilities in p can be estimated. To emphasize this distinction we refer to p as a
vector of empirical probabilities.

To distinguish our approach from other forms and meanings of probabilistic contextualism, e.g.,
[27,28,29], we dub it the “all-possible-couplings” approach. The term “coupling” refers to imposing a joint
distribution (say, that of H1

11

, H1

12

) on random variables that otherwise are not jointly distributed (A
11

and A
12

). For a rigorous and general discussion of couplings and connections see Section 5.
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3 Extended Linear Feasibility Polytope (ELFP)
ELFP is the set of all possible (p, ") for which there exists a vector H in (19) with jointly distributed
components Hk

ij

such that (20) holds, and, in accordance with (22),

Pr

⇥
H1

i1

= +1, H1

i2

= +1

⇤
= "1

i

,
Pr

⇥
H2

1j

= +1, H2

2j

= +1

⇤
= "2

j

,
(23)

for all i, j. The existence of such an H means the existence of a probability vector Q consisting of the 2

8

joint probabilities
Pr

⇥
H1

11

= h1

11

, H2

11

= h2

11

, . . . , H2

22

= h2

22

⇤
, (24)

h1

ij

, h2

ij

2 {+1,�1}. Let P denote the 2

5-component vector consisting of 24 empirical probabilities

Pr [A
ij

= a
ij

, B
ij

= b
ij

] (25)

and 24 connection probabilities
Pr [A

i1

= a
i1

, A
i2

= a
i2

] ,
Pr [B

1j

= b
1j

, B
2j

= b
2j

] ,
(26)

a
ij

, b
ij

2 {+1,�1}.
Define a 2

5 ⇥ 2

8 Boolean matrix M whose rows are enumerated in accordance with components of
P (i.e., by equalities [A

ij

= a
ij

, B
ij

= b
ij

], [A
i1

= a
i1

, A
i2

= a
i2

], or [B
1j

= b
1j

, B
2j

= b
2j

]) and columns
in accordance with components of Q (i.e., by equalities

⇥
H1

11

= h1

11

, H2

11

= h2

11

, . . . , H2

22

= h2

22

⇤
). An

entry of M contains 1 if and only if the corresponding random variables in the enumerations of its
row and its column have the same values: e.g., if a row is enumerated by [B

12

= b
12

, B
22

= b
22

] and a
column by

⇥
H1

11

= h1

11

, . . . , H2

12

= h2

12

, . . . , H2

22

= h2

22

⇤
, then their intersection contains 1 if and only if

h2

12

= b
12

, h2

22

= b
22

.
It is easy to see that H exists if and only if

MQ = P (27)

for some vector Q � 0 (componentwise) of probabilities. The vectors P for which such a Q exists are
exactly those within the polytope whose vertices are the columns of the matrix M . The term ELFP
is due to this construction extending that of the linear feasibility test in [10]. This test, among other
applications, is the most general way of extending the Bell/CHSH criterion to an arbitrary number of
particles, spin axes, and spin quantum numbers [10,11,30-32]. Its application to binary inputs/outputs
(not necessarily with equiprobable outcomes) is shown in Text S1.

To describe ELFP by inequalities on (p, "), we introduce the 16-component sets

Sp =

8
<

:

± (p
11

� 1/4)± (p
12

� 1/4)
± (p

21

� 1/4)± (p
22

� 1/4) :
each ± is + or �

9
=

; ,

S" =

8
<

:

±
�
"1
1

� 1/4
�
±
�
"2
1

� 1/4
�

±
�
"1
2

� 1/4
�
±
�
"2
2

� 1/4
�
:

each ± is + or �

9
=

; .

(28)

S
0

p and S
1

p denote the subsets of Sp with, respectively, even (0,2, or 4) and odd (1 or 3) number of +
signs; S

0

" and S
1

" are defined analogously. ELFP is described by

max

✓
max S

0

p+max S
1

",
max S

1

p+max S
0

"

◆
 3/2 (29)

(see Text S3).



Measuring Context 8

4 All, Fit, Force, and Equi sets
Let constr (p) denote any constraint (e.g., inequalities) imposed on p. Our approach consists in charac-
terizing this constraint by solving the following four problems:

1. Find the set All

constr

of all (p, ") 2 [0, 1/2]
8 with p subject to constr (p): i.e., (p, ") 2 All

constr

if and
only if

constr(p) and (p, ") 2 ELFP. (30)

2. Find the set Fit

constr

of connection vectors " 2 [0, 1/2]
4 that fit (are compatible with) all empirical

probability vectors p satisfying constr: i.e., " 2 Fit

const

if and only if

constr(p) =) (p, ") 2 ELFP. (31)

3. Find the set Force

constr

of " 2 [0, 1/2]
4 that force all compatible empirical probability vectors p to

satisfy constr: i.e., " 2 Force

constr

if and only if

(p, ") 2 ELFP=) constr(p) (32)

4. Find the set Equi

constr

of " 2 [0, 1/2]
4 for which an empirical probability vector p satisfies constr if

and only if (p, ") is in the ELFP set: i.e., " 2 Equi

constr

if and only if

constr(p)() (p, ") 2 ELFP. (33)

Clearly, Equi
constr

= Force

constr

\ Fit

constr

.

To illustrate, we focus on the following four benchmark constraints. The no-constraint, or “complete
chaos” situation is given by

chaos(p)() p 2 [0, 1/2]
4

, (34)

equivalent to (17) . The quantum mechanical constraint is given by

quant(p)() max S
1

p 
p
2/2, (35)

equivalent to (15) . The “classical” constraint is given by

class(p)() max S
1

p  1/2, (36)

equivalent to the Bell/CHSH inequalities (14). Finally, we consider the constraint

fix (p)() p = specific vector. (37)

For all constraints except for fix (p) the sets All, Fit, Force, and Equi are as shown in Table 1 (for
derivations see Text S4).

Thus, Fit
chaos

is the set of all " such that max S"  1/2: if an " is in this set, then any p (with no
constraints) is compatible with it. Force

quant

is characterized by max S
0

" � 3�
p
2

2

: if an " is in this set,
then all compatible with it p satisfy quant(p). Equi

class

is the set of all " such that S
0

" contains 1: for
any such an ", a p is compatible with it if and only if it satisfies class (p).

For each of these sets we compute Vol

d, its volume normalized by that of [0, 1/2]d, with d being the
dimensionality of the set (Fig. 2). Thus, the defining property of Force

class

, 1 2 S
0

", is satisfied if and only
if either all "k

i

are 0, or they all are 1/2, or two of them are 0 and two 1/2. Hence Vol4 (Force
class

) = 0. For
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Figure 2. Volume profiles under constraints. Profiles
Vol8 (All

constr

)! Vol4 (Fit
constr

)! Vol4 (Force
constr

)! Vol4 (Equi
constr

) for constraints chaos, quant,
and class.

Figure 3. Fit-set volumes for fixed probabilities. Vol

4

�
Fit

fix(p)

�
is shown as a function of

x = max S
0

p and y = max S
1

p. The possible (x, y) -pairs form the triangle ((0, 0), (1/2, 1), (1, 1/2)), and
Vol

4

�
Fit

fix(p)

�
= 1 +

⇢(x)

3

�
�1 + 8x� 24x2

+ 32x3 � 16x4

�
+

⇢(y)

3

�
�1 + 8y � 24y2 + 32y3 � 16y4

�
,

where ⇢ (z) = 1 if z � 1/2 and ⇢ (z) = 0 otherwise.
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Table 1. Characterizations of the sets of four different types (columns) subject to three constrains
(rows). In all cells, " 2 [0, 1/2]4 and p 2 [0, 1/2]4.

All (p, ") Fit (") Force (") Equi (")
chaos (p, ") 2 ELFP max S"  1/2 arbitrary max S"  1/2

quant
max S

1

p 
p
2/2

&

(p, ") 2 ELFP

max S
0

"  3�
p
2

2

,
max S

1

"  1/2
max S

0

" � 3�
p
2

2

3�
p
2

2

2 S
0

",
max S

1

"  1/2

class
max S

1

p  1/2
&

(p, ") 2 ELFP
max S

1

"  1/2 1 2 S
0

" 1 2 S
0

"

nonzero volumes, the derivation is described in Text S4. Each panel of Fig. 2 can be viewed as a “profile”
of the corresponding constraint. Each of the first three volumes in a panel can be viewed as characterizing
the “strictness” of a constraint, in three different meanings. The intuition of a stricter constraint is that
it corresponds to a smaller Vol8 (All

constr

), larger Vol4 (Fit
constr

), and smaller Vol4 (Force
constr

). Char-
acterizing constraints imposed on empirical probabilities by multidimensional volumes is not a new idea
[33], but our computations are different: they are aimed at sets of nonempirical connection probabilities
in relation to constraints imposed on empirical probabilities.

The constraint fix (p) has to be handled separately. Clearly, Vol8
�
All

fix(p)

�
= 0. Fit

fix(p)

is described
by

max S
1

"  3/2�max S
0

p,
max S

0

"  3/2�max S
1

p,
(38)

and Vol

4

�
Fit

fix(p)

�
is a polynomial function of max S

0

p and max S
1

p, these two quantities forming the
triangle ((0, 0), (1/2, 1), (1, 1/2)). The polynomial and its values are shown in Fig. 3 (see Text S5, for
computational details). Force

fix(p)

is clearly empty, hence so is Equi

fix(p)

.

5 All-possible-couplings approach on the general level
We show here how the approach presented so far generalizes to arbitrary sets of inputs and random
outputs. We use the term sequence to refer to any indexed family (a function from an index set into a set),
with index sets not necessarily countable. We present sequences in the form (xy

: y 2 Y ), (x
z

: z 2 Z), or
(xy

z

: y 2 Y, z 2 Z). A random variable is understood most broadly, as a measurable mapping between any
two probability spaces. In particular, any sequence of jointly distributed random variables is a random
variable. For brevity, we omit an explicit presentation of probability spaces and distributions. In all other
respects the notation and terminology closely follow [15,11].

An input is a set of elements called input values. Let ↵ =

�
↵k

: k 2 K
�

be a sequence of inputs. A
treatment is a sequence � = (xk

: k 2 K) that belongs to a nonempty set � ⇢
Q

k2K

↵k (so that xk 2 ↵k

for all k 2 K). If � 2 �, k 2 K, and I ⇢ K, then � (k) = xk 2 ↵k and �|I is the restriction of � to I,
i.e., the sequence (xk

: k 2 I).
An output is a random variable. Let

⇣
Ak

�

: k 2 K,� 2 �

⌘
be a sequence of outputs such that

1. A
�

=

⇣
Ak

�

: k 2 K
⌘

is a random variable for every � 2 �, i.e., the random variables Ak

�

across all
possible k possess a joint distribution;

2. if �,�0 2 �, I ⇢ K, and �|I = �0|I, then
⇣
Ak

�

: k 2 I
⌘
⇠
⇣
Ak

�

0 : k 2 I
⌘
.
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Property 2 is (complete) marginal selectivity [8]. A
�

is called an empirical random variable, and A =

(A
�

: � 2 �) is the sequence of empirical random variables.
Remark 1. The interpretation is that for every �, each ↵k may “directly” influence Ak

�

but no other
output in A

�

. The fact that inputs in ↵ =

�
↵k

: k 2 K
�

and outputs in an empirical random variable

A
�

=

⇣
Ak

�

: k 2 K
⌘

are in a bijective correspondence is not restrictive: this can always be achieved by
an appropriate grouping of inputs and (re)definition of treatments � [10].
Remark 2. The special case considered in the previous sections corresponds to K = {1, 2},

↵ =

�
↵1,↵2

�

with
↵k

=

�
↵k

1

,↵k

2

 
for k 2 {1, 2} ,

(39)

� = {�
11

,�
12

,�
21

,�
22

}
with

�
ij

=

�
↵1

i

,↵2

j

�
for i, j 2 {1, 2} ,

(40)

and (abbreviating A
�ij as A

ij

and Ak

�ij
as Ak

ij

)

A = (A
11

, A
12

, A
21

, A
22

) ,
with

A
ij

=

�
A1

i

, A2

j

�
for i, j 2 {1, 2} ,

(41)

where each Ak

ij

is a binary random variable with Pr

⇥
Ak

ij

= ak
1

⇤
= Pr

⇥
Ak

ij

= ak
2

⇤
=

1/2.

Given a sequence of empirical random variables A = (A
�

: � 2 �), a sequence of random variables

C
A

=

 
CI

⌧

: ⌧ 2
Y

k2I

↵k, I 2 2

K � {;,K}
!

(42)

(not necessarily jointly distributed) is called a connecting set for A if each CI

⌧

is a coupling for

AI

⌧

=

�
AI

�

: � 2 �,�|I = ⌧
�
, (43)

where AI

�

=

⇣
Ak

�

: k 2 I
⌘
. This means that CI

⌧

is a random variable of the form

CI

⌧

=

�
CI

⌧,�

: � 2 �,�|I = ⌧
�

(44)

with
CI

⌧,�

⇠ AI

�

(45)

for all � 2 � such that �|I = ⌧ . CI

⌧

is called an (I, ⌧) -connection. The indexation in CI

⌧,�

is to ensure
that if (I, ⌧) 6= (I 0, ⌧ 0), then CI

⌧

and CI

0

⌧

0 are stochastically unrelated. An identity (I, ⌧) -connection CI

⌧

is one with Pr

h
CI

⌧,�

= CI

⌧,�

0

i
= 1 for any �,�0 2 �.

Remark 3. It is generally convenient not to distinguish identically distributed connections. By abuse of
language, the distribution of CI

⌧

(or some characterization thereof) can also be called (I, ⌧) -connection.
We used this language in the previous sections when we represented

�
{k} , k 7! ↵k

i

�
-connections (without

introducing them explicitly) by probabilities "k
i

and called " a connection vector. See Remark 4.
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A jointly distributed sequence
H =

�
Hk

�

: k 2 K,� 2 �

�
(46)

is called an Extended Joint Distribution Sequence (EJDS) for (A,C
A

) if for any I 2 2

K � {;,K} and any
⌧ 2

Q
k2I

↵k,
HI

⌧

=

�
HI

�

: � 2 �,�|I = ⌧
�
⇠ CI

⌧

, (47)

where HI

�

=

⇣
Hk

�

: k 2 I
⌘
, and

HK

�

=

�
Hk

�

: k 2 K
�
⇠ A

�

(48)

for any � 2 �.
Remark 4. For the special case considered in the previous sections, a connecting set for A is (conveniently
replacing C

{k}
�ij

, C{1}
�ij |{1}, and C

{2}
�ij |{2} with Ck

ij

, C1

i

, and C2

j

, respectively)

C
A

=

�
C1

1

, C1

2

, C2

1

, C2

2

�

with
C1

i

=

�
C1

i,i1

, C1

i,i2

�
, C2

j

=

�
C2

j,1j

, C2

j,2j

�
,

(49)

such that
C1

i,ij

⇠ A1

ij

, C2

j,ij

⇠ A2

ij

(50)

for i, j 2 {1, 2}. An EJDS for (A,C
A

) is a random variable (using analogous abbreviations)

H =

�
H1

11

, H2

11

, H1

12

, H2

12

, H1

21

, H2

21

, H1

22

, H2

22

�
(51)

such that �
H1

i1

, H1

i2

�
⇠ C1

i

,
�
H2

1j

, H2

2j

�
⇠ C2

j

(52)

and
H12

ij

=

�
H1

ij

, H2

ij

�
⇠ A

ij

=

�
A1

ij

, A2

ij

�
(53)

for i, j 2 {1, 2}. In the previous sections each Ck

i

was represented by "k
i

and each H12

ij

by p
ij

.

An EJDS for (A,C
A

) reduces to the Joint Distribution Criterion set (JDC set) of the theory of selective
influences [11, 14] if all connections in C

A

are identity ones. Note that no connection has an empirical
meaning: for distinct �,�0 2 �, the variables AI

�

and AI

�

0 corresponding to CI

⌧,�

and CI

⌧,�

0 do not have
an empirically observable (or theoretically privileged) pairing scheme.

Let X be any set whose elements are sequences of empirical random variables A = (A
�

: � 2 �). X
can be viewed as the set of all possible empirical random variables satisfying certain constraints. We
define the sets All

X

, Fit
X

, Force
X

, and Equi
X

as follows:

1. All
X

is the set of all pairs (A,C
A

) such that

A 2 X
and

there exists an EJDS H for (A,C
A

) .
(54)

2. Fit
X

is the set of all C
A

such that

A 2 X
+

there exists an EJDS H for (A,C
A

) .
(55)
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3. Force
X

is the set of all C
A

such that

there exists an EJDS H for (A,C
A

)

+
A 2 X.

(56)

4. Equi

X

= Force

X

\ Fit

X

, that is, C
A

2 Equi

X

if and only if

A 2 X
m

there exists an EJDS H for (A,C
A

) .
(57)

The all-possible-couplings approach in the general case consists in characterizing any X (interpreted as a
type of contextuality or determinism) by All

X

, Fit
X

, Force
X

, and Equi
X

. A straightforward generaliza-
tion of this approach that might be useful in some applications is to replace C

A

in all definitions with a
subset of C

A

, or several subsets of C
A

tried in turn. Thus one might consider connections involving only
particular I ⇢ K (e.g., only singletons), or one might require that some of the connections are identity
ones.

Conclusion
The essence of the proposed mathematical framework is as follows. We consider all possible couplings for
empirically observed vectors of random outputs. In the case of two binary inputs/outputs these vectors
are pairs

(A
11

, B
11

) , (A
12

, B
12

) ,
(A

21

, B
21

) , (A
22

, B
22

) ,
(58)

the couplings H for them have the form (19), with the coupling relation (20). We assume that the joint
distributions (in our case described by pairwise joint probabilities) of the empirically observed (A

ij

, B
ij

)

are subject to a certain constraint, given to us by substantive considerations outside the scope of our
approach: for instance, if a system consists of entangled particles, a constraint, say (15), is derived from
the quantum theory. Due to (20), the constraint is imposed on

�
H1

11

, H2

11

�
,
�
H1

12

, H2

12

�
,�

H1

21

, H2

21

�
,
�
H1

22

, H2

22

�
.

(59)

We investigate then the unobservable “connections”, the subvectors of the components of H that corre-
spond to outputs obtained at mutually exclusive values of the inputs (i.e., never co-occurring). In our
case these are the pairs �

H1

11

, H1

12

�
,
�
H1

21

, H1

22

�
,�

H2

11

, H2

21

�
,
�
H2

12

, H2

22

� (60)

corresponding to, respectively,
(A

11

, A
12

) , (A
21

, A
22

) ,
(B

11

, B
21

) , (B
12

, B
22

) .
(61)

We then characterize the constraint imposed on the empirical pairs (59) by describing the “fitting” or
“forcing” (or both “fitting and forcing”) distributions of the unobservable connections (60). By fitting
distributions of (60) we mean those that are compatible with any (59) subject to the constraint in
question, the compatibility meaning that all these eight pairs can be embedded into a single H (with
jointly distributed components). By forcing distributions of (60) we mean those that are compatible with
(59) only if the latter are subject to the given constraint.
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The value of this approach is in providing a unified language for speaking of probabilistic contextuality.
At the cost of greater computational complexity but with no conceptual complications the computations
involved in our demonstration of the all-possible-couplings approach can be extended to more general
cases: arbitrary marginal probabilities (satisfying marginal selectivity), nonlinear constraints, and greater
numbers of inputs, outputs, and their possible values. The language for a completely general theory,
involving unrestricted (not necessarily finite) sets of inputs, outputs, and their values, is presented in
Section 5 of Theory.

Supporting Information

Text S1 Derivation of the Bell/CHSH bounds

Text S2 Derivation of the Cirel’son bounds

Text S3 Computations for ELFP

Text S4 Computations for chaos(p), quant(p), and class(p) constraints

Text S5 Computations for Fit

fix(p) constraint
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S1 Derivation of the Bell/CHSH bounds

A representation (8)-(9) exists if and only if the 24 possible values
�
h1

1

, h1

2

, h2

1

, h2

2

�
of H (hk

i

2 {+1,�1} , i, k 2
{1, 2}) can be assigned probabilities

p
�
h1

1

, h1

2

, h2

1

, h2

2

�
= Pr

⇥
H1

1

= h1

1

, H1

2

= h1

2

, H2

1

= h2

1

, H2

2

= h2

2

⇤
, (S1.1)

so that, for all a
ij

, b
ij

2 {+1,�1}, i, j 2 {1, 2},
X

h

1
1,h

1
2,h

2
1,h

2
2

�
�
h1

i

= a
ij

^ h2

j

= b
ij

�
p
�
h1

1

, h1

2

, h2

1

, h2

2

�
= Pr [A

ij

= a
ij

, B
ij

= b
ij

] , (S1.2)

where � (...) indicates the truth value (1 or 0) of the statement within the parentheses. It is easy to see
that this system of linear equations can be written as

MQ = P, (S1.3)

where P is the 16-vector of probabilities Pr [A
ij

= a
ij

, B
ij

= b
ij

] indexed (together with the columns of
matrix M) by (i, j, a

ij

, b
ij

)-values, say, lexicographically; Q is the 16-vector of unknown probabilities
p
�
h1

1

, h1

2

, h2

1

, h2

2

�
indexed (together with the rows of M) by

�
h1

1

, h1

2

, h2

1

, h2

2

�
-values in some order; and the

cells of M indexed by
�
(i, j, a

ij

, b
ij

) ,
�
h1

1

, h1

2

, h2

1

, h2

2

��
contain �

�
h1

i

= a
ij

^ h2

j

= b
ij

�
. We conclude that

a representation (8)-(9) exists if and only if

B (M,P ) = 1, (S1.4)

where B(M,P ) is a Boolean function equal to 1 if (S1.3) has at least one solution with nonnegative
components of Q. It is easy to show (see [10] for details) that solutions Q of (S1.3) always have the
property X

h

1
1,h

1
2,h

2
1,h

2
2

p
�
h1

1

, h1

2

, h2

1

, h2

2

�
= 1. (S1.5)

It is known from the linear programming theory that B (M,P ) is always computable. A standard facet
enumeration algorithm allows one to obtain the system of all linear inequalities and equations imposed
on P that are equivalent to (S1.4). This system turns out to consist of the equalities (2) representing
marginal selectivity, and inequalities that can be written as

� 2  E
ij

+ E
i

0
j

+ E
i

0
j

0 � E
ij

0  2, (S1.6)

where, in reference to (1), E
ij

= p
ij

+ s
ij

� q
ij

� r
ij

is the expected value of A
ij

B
ij

. When marginal
probabilities are all 1/2, these inequalities reduce to (14), using p

ij

= (E
ij

+ 1) /4.
Remark 5. It would be a mistake to consider this proof “computer-assisted” because it mentions a facet
enumeration algorithm. The latter is merely a long chain of trivial algebraic transformations, that can
always be written out in extenso if needed.
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S2 Derivation of the Cirel’son bounds
The following is a modification of the derivation given in [25]. Let a, a0, b, b0 be the Hermitian operators
in complex Hilbert space corresponding to, respectively, outputs A

1j

, A
2j

, B
i1

, B
i2

(where i and j are
irrelevant, i.e., a represents both A

11

and A
12

, b both B
11

and B
21

, etc.). Denoting by E expected value
and by Tr trace, we have, for any state (density operator) W ,

4p
11

� 1 = E [A
11

B
11

] = Tr (Wab) ,
4p

12

� 1 = E [A
12

B
12

] = Tr (Wab0) ,
etc.

(S2.1)

where either of a and a0 commutes with either of b and b0. Inequalities (15) to be demonstrated are
equivalent to

R
1

= |Tr (Wab) + Tr (Wab0) + Tr (Wa0b)� Tr (Wa0b0)| = |Tr (Ws
1

)|  2

p
2,

R
2

= |Tr (Wab) + Tr (Wab0)� Tr (Wa0b) + Tr (Wa0b0)| = |Tr (Ws
2

)|  2

p
2,

etc.

(S2.2)

where
s
1

= ab+ ab0 + a0b� a0b0 = a (b+ b0) + a0 (b� b0) ,
s
2

= ab+ ab0 � a0b+ a0b0 = a (b+ b0)� a0 (b� b0) ,
etc.

(S2.3)

Since the values of the outputs, +1/-1, are the eigenvalues of the corresponding operators, it can easily
be seen (e.g., by spectral decomposition, squaring, and then multiplication by an arbitrary vector) that

a2 = b2 = a02 = b02 = I, (S2.4)

where I is the identity operator. Using this we show by straightforward if somewhat tedious algebra that

s2
1

= s2
4

= 4I � (aa0 � a0a) (bb0 � b0b) ,
s2
2

= s2
3

= 4I + (aa0 � a0a) (bb0 � b0b) ,
(S2.5)

whence, using the conventional notation for commutators, [x, y] = xy � yx,

Tr

�
Ws2

1

�
= Tr

�
Ws2

4

�
= 4� Tr (W [a, a0] [b, b0]) ,

Tr

�
Ws2

2

�
= Tr

�
Ws2

3

�
= 4 + Tr (W [a, a0] [b, b0]) .

(S2.6)

For k = 1, 2, 3, 4, since s
k

is a Hermitian operator (as the sum of products of commuting Hermitian
operators), we know that

0  (Tr (Ws
k

))

2  Tr

�
Ws2

k

�
. (S2.7)

It follows from (S2.6) then that
|Tr (W [a, a0] [b, b0])|  4 (S2.8)

and

Tr

�
Ws2

k

�
 8. (S2.9)

But then
R2

k

= (Tr (Ws
k

))

2  8. (S2.10)

This implies (S2.2) and (15).
That the value 2

p
2 in (S2.2) can be attained is easy to show using the EPR/B paradigm: if ↵

1

= 0,
↵
2

= ⇡/2, �
1

= ⇡/4, �
2

= �⇡/4, then

R
1

= cos (↵
1

� �
1

) + cos (↵
1

� �
2

) + cos (↵
2

� �
1

)� cos (↵
2

� �
2

) = 2

p
2. (S2.11)
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Remark 6. It is instructive to see that if the operators a, a0 (or b, b0) commute, (S2.6) leads to R2

k

 4,
which, in view of (S2.1), is equivalent to (14). It is tempting therefore to consider (14) as merely a special
(commutative) case of the construction used above to prove (15). Notice however that this view cannot
be accepted without additional arguments: the proof of (14) makes no use of the assumption that the
outputs are eigenvalues of Hermitian operators in a Hilbert space.
Remark 7. It is known from [6, 7] that if a vector (p

11

, p
12

, p
21

, p
22

) satisfies (14), then this vector can
be generated by a system with binary inputs and equiprobable binary outputs that satisfies (3), that is,
is explainable by classical (non)contextuality. By contrast, if a vector (p

11

, p
12

, p
21

, p
22

) satisfies (15), it
is not known to us whether this vector can be generated by a quantum mechanical system with binary
inputs and equiprobable binary outputs. In this sense our characterization of quantum contextuality is
improvable. The issue of conditions that are both necessary and sufficient for quantum contextuality has
been addressed [33, 34, 35], but only in terms of the existence of some quantum systems, not necessarily
those with binary inputs and outputs.

S3 Computations for ELFP
A convex bounded polytope can be equivalently defined either as the convex hull of a set of points
(V-representation) or as the intersection of half-spaces (H-representation). For our purposes, a V-
representation of a convex polytope in d-space is given by a set of points x

1

, . . . , x
n

2 Rd. The poly-
tope consists of all convex combinations of these points: �

1

x
1

+ · · · + �
n

x
n

, for all �
1

, . . . ,�
n

� 0,
�
1

+ · · · + �
n

= 1. It is possible that the polytope is of lower dimension than the space Rd in which
it is defined if all the points x

i

reside in a lower dimensional affine subspace of Rd. A minimal V-
representation (including only extreme points, i.e., points that are vertices of the polytope) is unique.
The H-representation of a convex polytope is given by vectors a

1

, . . . , a
m

2 Rd and a vector b 2 Rm.
The polytope consists of the points x 2 Rd satisfying aT

i

x  b
i

for all i = 1, . . . ,m. A lower-dimensional
convex polytope can be represented by including inequalities of the forms aTx  b and (�a)Tx  �b for
some a and b or by explicitly specifying certain constraints as equations in the representation. For a full-
dimensional convex polytope, the minimal H-representation is unique. However, for a lower-dimensional
polytope, the equation constraints can be specified in many equivalent ways and the inequality constraints
can look different depending on which of the linearly related coordinates are used to specify them.

There exist algorithms for converting between the two representations of a convex polytope in exact
rational arithmetic. We have used our own program for these conversions but other programs, such
as lrs (http://cgm.cs.mcgill.ca/~avis/C/lrs.html), can do the same. The conversion between the two
representation is computationally demanding, the algorithms generally requiring superpolynomial time
in the size of the input.

A computationally simpler problem is eliminating redundant points (those that are not vertices of
the polytope) from a V-representation or eliminating redundant equations or inequalities from an H-
representation. This problem can be solved by linear programming and the algorithm is implemented
in the redund program that comes with lrs. However, the redund program is not sufficient for putting
an H-representation to a minimal form as it cannot convert sets of inequalities into equivalent equations
(e.g., the three inequalities x � 0, y � 0, x+ y  0 should be minimally represented as the two equations
x = 0, y = 0). To find the minimal H-representation, for every constraint aT

i

x  b
i

or aT
i

x = b
i

in turn,
one can find the upper and lower bounds u and l by maximizing and minimizing the expression aT

i

x given
the other constraints, and apply the following rules:

1. if this is an equation constraint (i.e., aT
i

x = b
i

) and u = l = b
i

, then the constraint is redundant
and can be eliminated;

2. if this is an inequality constraint (i.e., aT
i

x  b
i

) and u  b
i

, then the inequality is redundant and
can be eliminated. Otherwise, if l = b

i

, then the constraint should be converted to an equation.
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The dimension of a polytope can be determined from a minimal H-representation. It is the dimension
of the space minus the number of equation constraints in the minimal representation. Given a full-
dimensional polytope, its volume can be computed using the lrs program alongside the conversion from
a V-representation to an H-representation. If the polytope is given as an H-representation, then it has
to be converted to a V-representation first to compute its volume using lrs. To compute the volume of a
lower-dimensional polytope, we first move to a lower-dimensional parameterization that spans the affine
subspace where the polytope resides.

To compute ELFP, we begin by formulating the linear programming problem MQ = P subject to
Q � 0, as described in the main text (M being 2

5 ⇥ 2

8, P having 25 components). M defines the
V-representation for ELFP, and Vol8 for ELFP is computed directly from it. Applying an algorithm
to find an equivalent H-representation we obtain a system of 160 inequalities and 16 equations. We
can then substitute the expressions in the above matrices into this system and reduce any redundant
inequalities and equations. The resulting system has 144 nonredundant inequalities and no equations
with the p

11

, p
12

, p
21

, p
22

, "1
1

, "1
2

, "2
1

, "2
2

variables. Then (dropping the implicit " 2 [0, 1/2]4 and p 2 [0, 1/2]4

constraints), we algebraically simplify the list of 144 inequalities, first into

��  �p
11

+ p
21

+ p
12

+ p
22

 1 + �,
��  p

11

� p
21

+ p
12

+ p
22

 1 + �,
��  p

11

+ p
21

� p
12

+ p
22

 1 + �,
��  p

11

+ p
21

+ p
12

� p
22

 1 + �,

(S3.1)

� ⇤  p
11

+ p
21

+ p
12

+ p
22

 2 + ⇤, (S3.2)
|� p

11

� p
21

+ p
12

+ p
22

|  1 + ⇤,
|� p

11

+ p
21

� p
12

+ p
22

|  1 + ⇤,
|� p

11

+ p
21

+ p
12

� p
22

|  1 + ⇤,
(S3.3)

where
� = min{ 1� "1

1

� "2
1

+ "1
2

+ "2
2

,
1� "1

1

+ "2
1

� "1
2

+ "2
2

,
1� "1

1

+ "2
1

+ "1
2

� "2
2

,
1 + "1

1

� "2
1

� "1
2

+ "2
2

,
1 + "1

1

� "2
1

+ "1
2

� "2
2

,
1 + "1

1

+ "2
1

� "1
2

� "2
2

,
"1
1

+ "2
1

+ "1
2

+ "2
2

,
2� "1

1

� "2
1

� "1
2

� "2
2

},

(S3.4)

⇤ = min{� "1
1

+ "2
1

+ "1
2

+ "2
2

,
"1
1

� "2
1

+ "1
2

+ "2
2

,
"1
1

+ "2
1

� "1
2

+ "2
2

,
"1
1

+ "2
1

+ "1
2

� "2
2

,
1� "1

1

� "2
1

� "1
2

+ "2
2

,
1� "1

1

� "2
1

+ "1
2

� "2
2

,
1� "1

1

+ "2
1

� "1
2

� "2
2

,
1 + "1

1

� "2
1

� "1
2

� "2
2

},

(S3.5)

and then, by noticing regularities, into the compact inequality (29).
Remark 8. Changing "i

j

! 1/2� "i
j

leads to (denoting the new "-vector by "0)

max S
1

"0 = max S
0

",max S
0

"0 = max S
1

". (S3.6)

Analogously for p
ij

! 1/2� p
ij

,

max S
1

p0 = max S
0

p,max S
0

p0 = max S
1

p. (S3.7)
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It follows that we cannot without loss of generality confine all components of " or p to [0, 1/4]. But ELFP
does not change if the transformation x ! 1/2 � x is applied to an even number of the components of
(p, ").

S4 Computations for chaos(p), quant(p), and class(p) constraints
The All

constr

polytopes for the three constraints are obtained by concatenating the ELFP equations and
inequalities with the constraint inequalities. Then, the volumes are computed by using the lrs program
as described above.

For Fit
constr

polytopes, we observe first that they are convex. This follows from

Fit

constr

= {" : 8i = 1, . . . , n :

�
p
(i)

, "
�
2 ELFP }

= ELFP

p(1)
\ · · · \ ELFP

p(n)
,

(S4.1)

where p
(i)

, i = 1, . . . , n, denote the vertices of the 4D convex polytope defined by constr and ELFP

p(i)

denotes the (convex) cross-section of the ELFP set formed with p = p
(i)

. It follows that Fit
constr

is convex
as the intersection of convex sets. Following the logic of this observation, we have implemented a general
program for eliminating variables from a system of linear equations and inequalities so that the resulting
system is satisfied for exactly those values for which there exist such values of the eliminated variables
for which the original system is satisfied. This program together with steps to ensure that the resulting
representation is minimal was used to find all the Fit sets shown in the main text.

Finding the forcing sets is more difficult as they are generally not convex. We characterize them using
the equation

Force

chaos

� Force

constr

= {" : (9p : (p, ") 2 ELFP ^ ¬constr (p))} . (S4.2)

This equation provides an algorithm: for each inequality in constr, form the conjunction of the ELFP
inequalities with the negation of the inequality. Then project this conjunction to the " 4-space. The union
of these projections over all inequalities in constr is the set Force

chaos

�Force

constr

. We have implemented
a general program that takes as input a representation of a polytope, a list of additional constraints, and
a list of variables to eliminate. It then outputs a representation of the difference of the polytope and the
set represented by the additional constraints projected to the remaining (not eliminated) variables. This
representation consists of a list of linear systems whose disjunction characterizes the resulting set. In all
our computations it turned out that all the linear systems in the disjunction were the same, and so the
sets Force

chaos

� Force

constr

are in fact convex in these cases.
The computations of Equi sets require no elaboration.

Remark 9. There is the practical problem that the negation of a  -inequality is a > -inequality while
standard algorithms only accept closed convex polytopes. To cope with this problem, we approximated
a > b by a � b + (very small number). We also used a rational approximation to

p
2 in the quant

constraints. In both cases, we have repeated the computations with decreasing values of “very small
number” until it was obvious where the results converged.

S5 Computations for Fit

fix(p) constraint

That max S
0

p and max S
1

p are contained in and completely fill the triangle {(0, 0), (1/2, 1), (1, 1/2)} can
be verified by splitting (38) into 64 component cases according as which of the values of S

0

p and S
1

p are
the maxima, finding the vertices of each component system, and drawing the union of these components



Measuring Context 21

in max S
0

p and max S
1

p coordinates. The triangle is described by

2max S
0

p�max S
1

p � 0,
2max S

1

p�max S
0

p � 0,
max S

0

p+max S
1

p  3/2.
(S5.1)

Adding these inequalities to the representation of (38) as linear inequalities according to the definitions
of max S

0

" and max S
1

", we obtain a 6D polytope P (6) in (",max S
0

p,max S
1

p) -coordinates. In the
V-representation of P (6), all vertices have values of max S

0

p and max S
1

p in the set

{(0, 0), (1/4, 1/2), (1/2, 1/4), (1/2, 1), (1, 1/2)} . (S5.2)

It follows that every edge of the polytope projects to one of these 5 points or to a line connecting two
of them. Consequently, as (max S

0

",max S
1

") changes within any triangle T formed by these lines, the
cross-section P

(4)

(max S0",max S1")
of P (6) retains its structure (face lattice) while its coordinates change as

affine functions of (max S
0

",max S
1

") 2 T . It follows that the volume of P (4)

(max S0",max S1")
is a polynomial

of (max S
0

",max S
1

") 2 T of at most degree four. The coefficients of these polynomials were obtained by
fitting unconstrained degree 4 polynomials to the exact volumes Vol

4

�
Fit

fix(p)

�
for (max S

0

p,max S
1

p) 2
{0, .01, .02, . . . , 1}2. It turns out that the coefficients change only if either of the differences max S

0

p� 1/2
and max S

1

p � 1/2 changes its sign. In all cases the fit is perfect for the number of points far exceeding
the number of coefficients, confirming that the computations are correct.
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