rm(list=ls(all=TRUE)) # clear all variables graphics.off() # clear all graphics # Proactive Interference # Greg Francis # PSY 626 # 12 September 2025 # Bayesian dependent t-test # load data file PIdata<-read.csv(file="SmallProactiveInterference.csv",sep=",", header=TRUE,stringsAsFactors=TRUE) # Full data set #---------------------- # Run traditional dependent t-test FirstTrialData = subset(PIdata, Trial=="1") FifthTrialData = subset(PIdata, Trial=="5") traditional <- t.test(FirstTrialData$NumCorrect, FifthTrialData$NumCorrect, paired=TRUE) print(traditional) #------------------------ # Bayesian models # load the rethinking library library(rethinking) # Null model: one mean for both conditions # Different baseline (intercept) for each participant PImodel0 <- quap( alist( NumCorrect ~ dnorm(mu, sigma), mu <- a[Participant], a[Participant] ~ dnorm(5, 5), sigma ~ dunif(0, 7) ), data= PIdata , control=list(maxit=10000) ) cat("Finished PImodel0\n") # Alternative model 1: intercept is mean for trial 1, slope is deviation for trial 5 PIdata$IsFifth <-0* PIdata$Trial PIdata$IsFifth[PIdata$Trial =="5"] =1 PImodel1 <- quap( alist( NumCorrect ~ dnorm(mu, sigma), mu <- a[Participant] +b*IsFifth, a[Participant] ~ dnorm(5, 5), b ~ dnorm(5, 5), sigma ~ dunif(0, 7) ), data= PIdata , control=list(maxit=10000) ) cat("Finished PImodel1\n") # Compare models print(compare(PImodel0, PImodel1) )