Why it is difficult to win a pizza at Little Caesar’s.

Simple view
- The container theory of memory does not explain, for example,
 - why some memories are very long lasting (my childhood car trips to Utah)
 - why some memories are very brief (my wife asks me to take out the trash)
- We are not going to get a full theory of memory, but we can start to get an outline
 - and identify some misconceptions about memory

Ebbinghaus’ experiments
- First memory experiment (1885)
- Measure how long it takes to learn a list of nonsense syllables perfectly
 - NOF, QAP, HOS, LEQ, FIK, MEC, KIJ, HOM, NEM, MOJ
- How long does the memory last?
- In what form does the memory last?
- How does it affect future behavior?
- Does it help relearn the list at a later time?

Ebbinghaus
- Relearn the list at later points in time
 - a different list each time
- Measure how long it takes to relearn the list
- Calculate savings
 \[
 \text{Savings} = \frac{\text{Time}_{\text{original}} - \text{Time}_{\text{relearn}}}{\text{Time}_{\text{original}}}
 \]

Forgetting curve
- Savings = 1
 - subjects do not need to relearn, perfect memory
- Savings = 0
 - subjects show no evidence of earlier learning

Savings

Still not 0!
Significance
- Ebbinghaus’ results suggest that memories can last a very long time, in some form
 - Memories were believed to be “stored” in a memory system and did not just fade away (otherwise, the curve should not asymptote above zero)
 - Memory loss was believed to be due to interference of other memories
- Other experiments challenge this view

Memory task
- See (or hear) a trigram of consonants
- Report it back in order
- Ebbinghaus’ results suggest good memory until other letters are also memorized

Retention
- Peterson & Peterson (1959)
- Brown (1958)
- Give subjects trigram
 - ask them to count backwards by 3’s and then recall trigram
- Numbers are different from letters, you might not expect any interference
 - but they can have very strong interference

Retention
- Vary duration of counting backward
- The results of the Brown-Peterson study also suggest that some aspects of forgetting are passive
 - even if you are distracted, you can recall the trigram if only a short time has passed
 - if many seconds have passed, while you are distracted, you cannot recall the trigram
 - memory has “decayed”, or something like decay, while you were doing the distracting task
Retention

- CogLab data
 - 124 subjects
 - Not everyone shows interference on this task

Another experiment

- Memory span
 - how many items can you correctly recall immediately after exposure?
 - “The magic number 7+/-2:…”
 - Miller (1956)

Interpretation

- There exist two types of memory systems
- Long Term Memory (LTM)
 - high capacity (no limit)
 - long duration (forever)
 - Ebbinghaus’ experiment
- Short Term Memory (STM)
 - small capacity (~7 items)
 - short duration (seconds)
 - Memory span, Brown-Peterson

Pizza

- The Little Caesar’s in W. Lafayette used to have a game where you could win a pizza
 - must repeat a sequence of flashing lights (changes every time)
 - The sequence gets longer until you make a mistake
 - need a sequence length >7 to win much
 - Counts number of correct button presses
 - 56 (sequence of 11 buttons): win a soft drink
 - 110 (sequence of 15 buttons): win crazy bread
 - 210 (sequence of 20 buttons): win pizza
 - nearly impossible with STM properties

Modal Model of Memory

- Atkinson & Shiffrin (1968)
- Multiple stages of memory
- STM plays a dominant role in active memory
- Requires transfer between STM (STS) and LTM (LTS)

Modal Model of Memory

- When something is memorized
 - Items are first held in STM (temporary store)
 - Items may transfer to LTM (permanent store)
 - Takes time to transfer
Free Recall Serial Position Curve
- Given almost any list of items
- Subjects remember the first and last few items best (free recall, not immediate serial recall)

Serial position curve
- The effect of position is robust across many types of lists
 - words
 - letters
 - numbers
 - pictures...
- Here’s the CogLab data
 - (124 subjects)
- Demo

Serial position curve
- In some situations the serial position curve can be explained by different properties of STM and LTM
 - PRIMACY: Use LTM
 - RECENCY: Use STM
 - NEITHER LTM NOR STM

Conclusions
- Short Term Memory (STM)
- Long Term Memory (LTM)
- STM / LTM distinction is one of the strongest conclusions of cognitive psychology
- Accounts for quite a bit of data
- Many details are unresolved

Next time
- Expansion of STM into working memory
 - central executive
 - phonological store
 - visuo-spatial sketchpad
- CogLab on Sternberg search due!
- Why there is a gate at the first floor stairway in the Psych building.